Skip to main content

Advertisement

Log in

siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Highly Pathogenic Avian Influenza (HPAI) H5N1 virus is a threat to animal and public health worldwide. Till date, the H5N1 virus has claimed 402 human lives, with a mortality rate of 58% and has caused the death or culling of millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, measured by hemagglutination (HA), plaque reduction and Real time RT-PCR assay, in inhibiting H5N1 virus (A/chicken/Navapur/7972/2006) replication in MDCK cells. The siRNAs caused 8- to 16-fold reduction in virus HA titers at 24 h after challenged with 100TCID50 of virus. Among these siRNAs, PB2-2235 offered the highest inhibition of virus replication with 16-fold reduction in virus HA titer, 80% reduction in viral plaque counts and 94% inhibition in expression of specific RNA at 24 h. The other two siRNAs had 68–73% and 87–88% reduction in viral plaque counts and RNA copy number, respectively. The effect of siRNA on H5N1 virus replication continued till 48h (maximum observation period). These findings suggest that PB2-2235 could efficiently inhibit HPAI H5N1 virus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ameres SL, Martinez J and Schroeder R 2007 Molecular Basis for Target RNA Recognition and Cleavage by Human RISC. Cell 130 101–112

    Article  CAS  PubMed  Google Scholar 

  • Boltz DA, Douangngeun B, Phommachanh P, Sinthasak S, Mondry R, Obert C, Seiler P, Keating R, et al. 2010 Emergence of H5N1 avian influenza viruses with reduced sensitivity to neuraminidase inhibitors and novel reassortants in Lao PDR. J. Gen. Virol. 91 949–959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS, Kumar NM, Pushko P, et al. 2008 Cross-Clade Protective Immune Responses to Influenza Viruses with H5N1 HA and NA Elicited by an Influenza Virus-Like Particle. PLoS One 3 e1501

    Article  PubMed Central  PubMed  Google Scholar 

  • Capua I and Alexander DJ 2009 Avian influenza infection in birds: a challenge and opportunity for the poultry veterinarian. Poult. Sci. 88 842–846

    Article  CAS  PubMed  Google Scholar 

  • Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS, Hussein AA, Cornelius C, et al. 2011 Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine 29 9368–9375

    Article  PubMed  Google Scholar 

  • Cha RM, Smith D, Shepherd E, Davis CT, Donis R, Nguyen T, Nguyen HD, Do HT, et al. 2013 Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines. Vaccine 31 4953–4960

    Article  PubMed  Google Scholar 

  • Chan CY, Carmack CS, Long DD, Maliyekkel A, Shao Y, Roninson IB and Ding Y 2009 A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10 S33

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheung C-L, Rayner JM, Smith GJD, Wang P, Naipospos TSP, Zhang J, Yuen K-Y, Webster RG, et al. 2006 Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J. Infect. Dis. 193 1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Domenech J, Dauphin G, Rushton J, McGrane J, Lubroth J, Tripodi A, Gilbert J and Sims LD 2009 Experiences with vaccination in countries endemically infected with highly pathogenic avian influenza: the Food and Agriculture Organization perspective. Rev. Sci. Tech. 28 293–305

    CAS  PubMed  Google Scholar 

  • Dubois J, Terrier O and Rosa-Calatrava M 2014 Influenza viruses and mRNA splicing: doing more with less. MBio 5 e00070–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T 2001 Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 494–498

    Article  CAS  PubMed  Google Scholar 

  • FAO 2011 Approaches to controlling, preventing and eliminating H5N1 highly pathogenic avian influenza in endemic countries. Animal Production and Health Paper No. 171

  • Fouchier RAM, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, et al. 2005 Characterization of a novel influenza A virus haemagglutinin subtype (H16) obtained from black headed gulls. J. Virol. 79 2814–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Q, Chou YY, Doğanay S, Vafabakhsh R, Ha T and Palese P 2012 The Influenza A Virus PB2, PA, NP, and M Segments Play a Pivotal Role during Genome Packaging. J. Virol. 86 7043–7051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN and Chen JZ 2003 RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA. 100 2718–2723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Govorkova EA, Baranovich T, Seiler P, Armstrong J, Burnham A, Guan Y, Peiris M, Webby RJ, et al. 2013 Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002-2012 shows need for continued monitoring. Antiviral Res 98 297–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He G, Qiao J, Dong C, He C, Zhao L and Tian Y 2008 Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res 77 72–76

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann E, Stech J, Guan Y, Webster RG and Perez DR 2001 Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146 2275–2289

    Article  CAS  PubMed  Google Scholar 

  • Hurt AC, Selleck P, Komadina N, Shaw R, Brown L and Barr IG 2007 Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antiviral Res 73 228–231

    Article  CAS  PubMed  Google Scholar 

  • Kowalinski E, Zubieta C, Wolkerstorfer A, Szolar OH, Ruigrok RW and Cusack S 2012 Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain ofinfluenza pH1N1 (2009) polymerase. PLoS Pathog. 8 e1002831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YC, Kong LH, Cheng BZ and Li KS 2005 Construction of influenza virus siRNA expression vectors and their inhibitory effects on multiplication of influenza virus. Avian Dis 49 562–573

    Article  PubMed  Google Scholar 

  • Li W, Yang X, Jiang Y, Wang B, Yang Y, Jiang Z and Li M 2011 Inhibition of influenza A virus replication by RNA interference targeted against the PB1 subunit of the RNA polymerase gene. Arch. Virol. 156 1979–1987

    Article  CAS  PubMed  Google Scholar 

  • Luo KQ and Chang DC 2004 The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem. Biophys. Res. Commun. 318 303–310

    Article  CAS  PubMed  Google Scholar 

  • Morris KV and Rossi JJ 2006 Antiviral applications of RNAi. Curr. Opin. Mol. Ther. 8 115–121

    CAS  PubMed  Google Scholar 

  • Muramoto Y, Noda T, Kawakami E, Akkina R and Kawaoka Y 2013 Identification of novel influenza A virus proteins translated from PA mRNA. J. Virol. 87 2455–2462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagarajan S, Murugkar HV, Tosh C, Behera P, Khandia R, Jain R, Katare M, Syed Z, et al. 2012 Comparison of a nucleoprotein gene based RT-PCR with real time RT-PCR for diagnosis of avian influenza in clinical specimens. Res. Vet. Sci. 93 504–507

    Article  CAS  PubMed  Google Scholar 

  • OIE 2012 Manual of diagnosis tests and vaccines for terrestrial animals. Avian influenza. Chapter 2.3.4. Paris, France

  • Portela A and Digard P 2002 The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J. Gen. Virol. 83 723–734

    CAS  PubMed  Google Scholar 

  • Reed LJ and Muench H 1938 A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27 493–497

    Google Scholar 

  • Santhosh SR, Parida MM, Dash PK, Pateriya A, Pattnaik B, Pradhan HK, Tripathi NK, Ambuj S, et al. 2007 Development and evaluation of SYBR Green I-based one-step real-time RT-PCR assay for detection and quantification of Chikungunya virus. J. Clin. Virol. 39 188–193

    Article  CAS  PubMed  Google Scholar 

  • Savill NJ, St Rose SG, Keeling MJ and Woolhouse ME 2006 Silent spread of H5N1 in vaccinated poultry. Nature 442 757

    Article  CAS  PubMed  Google Scholar 

  • Sikora D, Rocheleau L, Brown EG, Pelchat M 2014 Deep sequencing reveals the eight facets of the influenza A/HongKong/1/1968 (H3N2) virus cap-snatching process. Sci. Rep. 4 6181. doi:10.1038/srep06181

  • Stewart CR, Karpala AJ, Lowther S, Lowenthal JW and Bean AG 2011 Immunostimulatory Motifs Enhance Antiviral siRNAs targeting Highly Pathogenic Avian Influenza H5N1. PLoS One 6 e21552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui HY, Zhao GY, Huang JD, Jin DY, Yuen KY and Zheng BJ 2009 Small interfering RNA targeting M2 gene induces effective and long term inhibition of influenza A virus replication. PLoS One 4 e5671

    Article  PubMed Central  PubMed  Google Scholar 

  • Swayne DE, Pavade G, Hamilton K, Vallat B and Miyagishima K 2011 Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev. Sci. Tech. 30 839–870

    CAS  PubMed  Google Scholar 

  • Tong S, Li Y, Rivailler P, Conrardy C, Castillo DAA, Chen LM, Recuenco S, Ellison JA, et al. 2012 A distinct lineage of Influenza A virus from bats. Proc. Natl. Acad. Sci. USA. 109 4269–4274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, et al. 2013 New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog. 9 e1003657

    Google Scholar 

  • Tosh C, Murugkar HV, Nagarajan S, Tripathi S, Katare M, Jain R, Khandia R, Syed Z, et al. 2011 Emergence of amantadine-resistant avian influenza H5N1 virus in India. Virus Genes 42 10–15

    Article  CAS  PubMed  Google Scholar 

  • Wang ZG, Jiang WM, Liu S, Hou GY, Li JP, Wang ZY and Chen JM 2012 Increased substitution rate in H5N1 avian influenza viruses during mass vaccination of poultry. Chin. Sci. Bull. 57 2419–2424

    Article  CAS  Google Scholar 

  • WHO 2015 Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/

  • Zhang W, Wang CY, Yang ST, Qin C, Hu JL and Xia XZ 2009 Inhibition of highly pathogenic avian influenza virus H5N1 replication by the small interfering RNA targeting polymerase A gene. Biochem. Biophys. Res. Commun. 390 421–426

    Article  CAS  PubMed  Google Scholar 

  • Zheng W and Tao YJ 2013 Structure and assembly of the influenza A virus ribonucleoprotein complex. FEBS letters 587 1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Jin M, Yu Z, Xu X, Peng Y, Wu H, Liu J, Liu H, et al. 2007 Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res 76 186–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Director, Indian Veterinary Research Institute and Indian Council of Agricultural Research, New Delhi, for providing necessary facilities to carry out this work. We are thankful to the Department of Animal Husbandry, Dairying and Fisheries, Ministry of Agriculture, India, for financial support through CDDL for Avian influenza diagnosis and research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakradhar Tosh.

Additional information

Corresponding editor: Indranil Dasgupta

[Behera P, Nagarajan S, Murugkar HV, Kalaiyarasu S, Prakash A, Gothalwal R, Dubey SC, Kulkarni DD and Tosh C 2015 siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus. J. Biosci. 40 1–8] DOI 10.1007/s12038-015-9524-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, P., Nagarajan, S., Murugkar, H.V. et al. siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus . J Biosci 40, 233–240 (2015). https://doi.org/10.1007/s12038-015-9524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9524-6

Keywords

Navigation