Skip to main content
Log in

Far infrared properties of OH megamaser host galaxies

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The hosts of OH megamaser (OHM) are luminous infrared galaxies (LIRGs), in fact 1/3 of them are ultra-luminous infrared galaxies (ULIRGs), which imply that OHM phenomena should be related to the infrared radiation field. In this paper, we investigate the far infrared (FIR) properties of OHM host galaxies, through detailed infrared data covering broad bands. All known OHM sources and one control sample of (U)LIRGs without maser detections (non-OHM sources) are cross-identified with AKARI and Herschel photometric catalogs. Comparative analysis on the spectral energy distribution (SED) with broad coverage from J to 350 \(\mu \)m (taken from 2MASS, WISE, Spitzer, and AKARI and Herschel archive data) shows that the OHM sources tend to have higher FIR luminosities than those of the non-OHM sources, which are more pronounced in the SED range covered by the AKARI. These are consistent with our statistical results of the FIR luminosities distribution of both the samples, which show that the OHM sources tend to have higher FIR luminosities, especially, at short FIR wavelength (i.e., the 65 and 90 \(\mu \)m). However, the non-OHM sources tend to have much stronger emission than those of OHM sources at both the near infrared (NIR) and middle infrared (MIR) bands. The statistic analysis of the color–color properties at MIR and FIR bands shows that the OHM sources have much cooler MIR and warmer FIR colors than non-OHM sources. These clues could help us to choose OHM candidates for future OHM surveys with the Five-hundred-meter Aperture Spherical radio Telescope (FAST), where the OHM detection rate may exceed 40%. Further, one significant correlation of \(L_\textrm{OH} \propto L_{T_\textrm{FIR}}^{1.18\pm 0.11}\) can be found between the maser luminosity and total FIR luminosity of OHM LIRGs. Combined with previous studies, we suggest that the OHM is dominantly pumped by the FIR, instead of NIR and MIR radiation fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://irsa.ipac.caltech.edu/cgi-bin/Gator/nph-scan?projshort=AKARI &mission=irsa.

  2. https://irsa.ipac.caltech.edu/cgi-bin/Gator/nph-scan?projshort=Herschel &mission=irsa.

  3. https://irsa.ipac.caltech.edu/cgi-bin/Gator/nph-scan?projshort=2MASS &mission=irsa.

  4. https://www.ir.isas.jaxa.jp/AKARI/Observation/support/FIS/zeromag.html.

  5. The expression of partial correlation coefficient between x and y at fixed z is:

    $$\begin{aligned} R_{xy,z}=\frac{(R_{xy}-R_{xz}R_{yz})}{\sqrt{(1-R_{xz}^{2})(1-R_{yz}^{2})}}, \end{aligned}$$

    where \(R_{ij}\) is the standard correlation coefficient.

References

  • Armus et al. 2007, ApJ, 656, 148

  • Bann W. A. 1985, Nature, 315, 26

    Article  ADS  Google Scholar 

  • Bann W. A., Haschick A. D., Schemelz J. T. 1985, ApJ, 298, 51

    Article  ADS  Google Scholar 

  • Bann W. A. 1989, ApJ, 338, 804

    Article  ADS  Google Scholar 

  • Bann W. A. 1991, ASP Conf. Ser., 16, 45

    ADS  Google Scholar 

  • Bann W. A., Klöckner H. R. 2006, A &A, 449, 559

  • Bann W. A., Salzer J. J., Lewinter R. D. 1998, 509, 633

  • Baan W. A., Haschick A., Henkel C. 1992, AJ, 103, 728

  • Bottinelli L., Gouguenheim L., et al. 1990, IAU Circ, 4977, 2

  • Burdyuzha V. V., Vikolov K. A. 1990, MNRAS, 244, 86

    ADS  Google Scholar 

  • Casey C. M., 2012, MNRAS, 425, 3094

    Article  ADS  Google Scholar 

  • Chen P. S., Shan H. G., Gao Y. F. 2007, AJ, 133, 496

  • Chen P. S., Zhang P. 2006, AJ, 131, 1942

  • Cohen M., Wheaton Wm. A., Megeath S. T. 2003, ApJ, 126, 1090C

  • Darling J., Giovanelli R. 2000, AJ, 119, 3003

  • Darling J., Giovanelli R. 2001, AJ, 121, 1278

  • Darling J., Giovanelli R. 2002, AJ, 124, 100

  • Darling J., Giovanelli R. 2006, AJ, 132, 2596

  • Diamond P. J., Lonsdale C. J., Lonsdale C. J., Smith H. E. 1999, ApJ, 511, 178

    Article  ADS  Google Scholar 

  • Fernandez M. X., Momjian E., Salter C. J., Ghosh T. 2010, AJ, 139, 2066

  • Galametz M., Kennicutt R. C., Calzetti D., et al. 2013, MNRAS, 431, 1956

    Article  ADS  Google Scholar 

  • Hao L., Weedman D. W., Spoon H. W. W., et al. 2007, ApJ, 655, L77

    Article  ADS  Google Scholar 

  • He J. H., Chen P. S. 2004, New Astron., 9, 545

    ADS  Google Scholar 

  • Henkel C., Guesten R., Baan W. A. 1987, A &A, 185, 14

    ADS  Google Scholar 

  • Henkel C., Wilson T. L. 1990, A &A, 229, 431

    ADS  Google Scholar 

  • Hirashita H., Kaneda H., Onaka T., et al., 2008, PASJ, 60, S477

    Article  ADS  Google Scholar 

  • Kandalyan R. A. 1996, Astrophysics, 39, 237

    Article  ADS  Google Scholar 

  • Kandalyan R. A., Al-Zyout M. 2010, Astrophysics, 53, 475

  • Kegel W. H., Hertenstein T., Quirrenbach A. 1999, A &A, 351, 472

    ADS  Google Scholar 

  • Lockett P., Elitzur M., 2008, ApJ, 677, 985

    Article  ADS  Google Scholar 

  • Lonsdale Colin. J., Lonsdale Carol. J., Diamond P. J., Smith H. E., 1998, ApJ, 493, L13

  • Martin J. M., Le Squeren A. M., Bottinelli L., Gouguenheim L., Dennefeld M. 1988, A &A, 201, L13

    ADS  Google Scholar 

  • McBride J., Heiles C., Elitzur M. 2013, ApJ, 774, 35

    Article  ADS  Google Scholar 

  • Randell J., Field D., Jones K., Yates J. 1995, A &A, 300, 659

    ADS  Google Scholar 

  • Skinner C. J., Smith H. A., Sturm E., et al. 1997, Nature, 386, 472

    Article  ADS  Google Scholar 

  • Staveley-Smith L., Norris R. P., Chapman J. M., Allen D. A., et al., 1992, MNRAS, 258, 725

    Article  ADS  Google Scholar 

  • Unger S. W., Chapman J. M., Cohen R. J., Hawarden T. G., Mountain C. M., 1986, MNRAS, 220, P1

    Article  ADS  Google Scholar 

  • Vignali C., Brandt W. N., Comastri A., Darling J. 2005, MNRAS, 364, 99

    Article  ADS  Google Scholar 

  • Wang J., Wang Y. X., Zhang J. S., et al. 2018, J. Guangzhou Univ. (Nat. Sci. Ed.), 17, 30

  • Weaver H., Williams D. R. W., Dieter N. H., Lum W. T. 1965, Nature, 208, 29

    Article  ADS  Google Scholar 

  • Whiteoak J. B., Gardner F. F. 1974, ApJ, L15, 211

  • Willett K. W., Darling J., Spoon H. W. W., Charmandaris V., Armus L. 2011a, ApJ, 730, 56

    Article  ADS  Google Scholar 

  • Willett K. W., Darling J., Spoon H. W. W., Charmandaris V., Armus L. 2011b, ApJS, 193, 18

    Article  ADS  Google Scholar 

  • Willett K. W. 2012, IAUS, 287, 345

    Article  ADS  Google Scholar 

  • Yun M. S., Reddy, N. A., Condon J. J. 2001, ApJ, 554, 803

    Article  ADS  Google Scholar 

  • Zhang J. S., Wang J. Z., Di G. X., et al. 2014, A &A, 570, A110

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (NSFC, Grant Nos. 12041302, U2031106, 11473007 and 11590782) and Provincial Training Program of Innovation and Entrepreneurship for Undergraduates (nos. 201811078089, CX2019194 and CX2019210). This work has made use of data products from the AKARI, Herschel, WISE, Spitzer and 2MASS. This paper has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The NASA Astrophysics Data System Bibliographic Services (ADS) are also used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lv, BH., Lin, RQ. et al. Far infrared properties of OH megamaser host galaxies. J Astrophys Astron 44, 53 (2023). https://doi.org/10.1007/s12036-023-09942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09942-y

Keywords

Navigation