Skip to main content
Log in

Progression of digital-receiver architecture: From MWA to SKA1-Low, and beyond

  • TECHNICAL Review
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Backed by advances in digital electronics, signal processing, computation and storage technologies, aperture arrays, which had strongly influenced the design of telescopes in the early years of radio astronomy, have made a comeback. Amid all these developments, an international effort to design and build the world’s largest radio telescope, the Square Kilometre Array (SKA), is ongoing. With its vast collecting area of 1 \(\hbox {km}^2\), the SKA is envisaged to provide unsurpassed sensitivity and leverage technological advances to implement a complex receiver to provide a large field of view through multiple beams on the sky. Many pathfinders and precursor aperture array telescopes for the SKA, operating in the frequency range of 10–300 MHz, have been constructed and operationalized to obtain valuable feedback on scientific, instrumental and functional aspects. This review article looks explicitly into the progression of digital-receiver architecture from the Murchison Widefield Array (precursor) to the SKA1-Low. It highlights the technological advances in analog-to-digital converters (ADCs), field-programmable gate arrays (FPGAs) and central processing unit–graphics processing unit (CPU–GPU) hybrid platforms around which complex digital signal processing systems implement efficient channelizers, beamformers and correlators. The article concludes with a preview of the design of a new generation signal processing platform based on radio frequency system-on-chip (RFSoC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://docs.xilinx.com/v/u/en-US/xapp1301-mechanical-thermal-design-guidelines.

References

  • Aafreen R., Abhishek R., Ajithkumar B., et al. 2022, arXiv:2207.07054, 21

  • Bellanger M., Daguet J. 1974, IEEE Trans.Commun., 22, 7

    Article  Google Scholar 

  • Buch K. D., Bhatporia S., Gupta Y., et al. 2016, J. Astron. Instrum., 5, 14

    Article  Google Scholar 

  • Caputa K., Harrison S., Ljusic Z., Pleasance M., Zhao E. 2022, in Ground-based and Airborne Telescopes IX, Vol. 12182, Proceedings of SPIE, p. 19

  • Comoretto G., Chiello R., Roberts M., et al. 2017, J. Astron. Instrum., 6, 17

    Article  Google Scholar 

  • Comoretto G., Monari J., Belli C., et al. 2020, in Ground-based and Airborne Telescopes VIII, Vol. 11445, Proceedings of SPIE, p. 14

  • De K., Gupta Y. 2016, Exp. Astron., 41, 25

    Article  Google Scholar 

  • de Lera Acedo E., Razavi-Ghods N., Troop N., Drought N., Faulkner A. 2015, Exp. Astron., 39, 28

    Article  Google Scholar 

  • DeBoer D. R., Parsons A. R., Aguirre J. E., et al. 2017, Publ. Astron. Soc. Pac., 129, 27

    Article  Google Scholar 

  • Deller A. T., Tingay S., Bailes M., West C. 2007, Publ. Astron. Soc. Pac., 119, 19

    Article  Google Scholar 

  • Dewdney P. E., Hall P. J., Schilizzi R. T., Lazio T. J. L. 2009, Proc. IEEE, 97, 15

    Article  Google Scholar 

  • Garrett M. A. 2013, in 2013 Africon Conference, IEEE Xplore, p. 5

  • Girish B. S., Srivani K. S., Subrahmanyan R., et al. 2020, J. Astron. Instrum., 9, 17

    Article  Google Scholar 

  • Gupta Y. 2014, Metrewavelength Sky, 13, 7

    Google Scholar 

  • Gupta Y., Ajithkumar B., Kale H., et al. 2017, Curr. Sci., 113, 8

    Google Scholar 

  • Harris F. J., Dick C., Rice M. 2003, IEEE Trans. Microw. Theory Tech., 51, 18

    Article  Google Scholar 

  • Lonsdale C. J., Cappallo R. J., Morales M. F., et al. 2009, Proc. IEEE, 97, 9

    Article  Google Scholar 

  • Manley J., Kapp F. 2012, in 2012 International Conference on Electromagnetics in Advanced Applications, IEEE, p. 4

  • Morrison I., Bunton J., van Straten W., Deller A., Jameson A. 2020, J. Astron. Instrum., 9, 17

    Article  Google Scholar 

  • Naldi G., Mattana A., Pastore S., et al. 2017, J. Astron. Instrum., 6, 17

    Article  Google Scholar 

  • Parsons A. R., Backer D. C., Foster G. S., et al. 2010, Astron. J., 139, 13

    Article  Google Scholar 

  • Patra N. N., Kanekar N., Chengalur J. N., et al. 2019, Month. Not. R. Astron. Soc., 483, 16

    Article  Google Scholar 

  • Perley R., Napier P., Jackson J., et al. 2009, Proc. IEEE, 97, 15

    Article  Google Scholar 

  • Prabu T., Srivani K., Kamini P., et al. 2014, in Astronomical Society of India Conference Series, Vol. 13, p. 5

  • Prabu T., Srivani K., Roshi D. A., et al. 2015, Exp. Astron., 39, 21

    Article  Google Scholar 

  • Reddy S. H., Kudale S., Gokhale U., et al. 2017, J. Astron. Instrum., 6, 16

    Article  Google Scholar 

  • Roy J., Gupta Y., Pen U.-L., et al. 2010, Exp. Astron., 28, 36

    Article  Google Scholar 

  • Schilizzi R. T., Dewdney P. E., Lazio T. J. W. 2008, in Ground-based and Airborne Telescopes II, Vol. 7012, Proceedings of SPIE, p. 13

  • Schillirò F., Alderighi M., Belli C., et al. 2020, in Ground-based and Airborne Telescopes VIII, Vol. 11445, Proceedings of SPIE, p. 16

  • Schinckel A. E., Bunton J. D., Cornwell T. J., Feain I., Hay S. G. 2012, in Ground-based and Airborne Telescopes IV, Vol. 8444, Proceedings of SPIE, p. 12

  • Tingay S. J., Goeke R., Bowman J. D., et al. 2013, Publ. Astron. Soc. Aust., 30, 21

    Article  Google Scholar 

  • van Haarlem M. P., Wise M. W., Gunst A., et al. 2013, Astron. Astrophys., 556, 53

    Article  Google Scholar 

  • Wayth R. B., Tingay S. J., Trott C. M., et al. 2018, Publ. Astron. Soc. Aust., 35, 9

    Article  Google Scholar 

Download references

Acknowledgements

We thank Raman Research Institute (RRI) for supporting the Integrated Prototype Board activities taking place under the SKA India Consortium (SKAIC) project proposal (DPR 2019). Authors Girish, Srivani and Prabu thank Manjunath Bevinamar, Hardik Purohit and Jeetesh Tiwari at Avnet India Pvt. Ltd., for providing valuable insights into Gen 3 RFSoCs andenthusiastically supporting us during IPB activities. Thanks to Shirisha at RRI for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Girish.

Additional information

This article is part of the Special Issue on “Indian Participation in the SKA”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girish, B.S., Reddy, S.H., Sethi, S. et al. Progression of digital-receiver architecture: From MWA to SKA1-Low, and beyond. J Astrophys Astron 44, 28 (2023). https://doi.org/10.1007/s12036-023-09921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09921-3

Keywords

Navigation