Skip to main content
Log in

Detection of interstellar cyanamide (NH\(_{2}\)CN) towards the hot molecular core G10.47\(+\)0.03

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

In the interstellar medium, the amide-type molecules play an important role in the formation of prebiotic molecules in the hot molecular cores or high-mass star-formation regions. The complex amide-related molecule cyanamide (NH\(_{2}\)CN) is known as one of the rare interstellar molecule which has a major role in the formation of urea (NH\(_{2}\)CONH\(_{2}\)). In this paper, we presented the detection of the rotational emission lines of cyanamide (NH\(_{2}\)CN) towards the hot molecular core G10.47\(+\)0.03 between the frequency range of 158.49–160.11 GHz using the Atacama Large Millimeter/Submillimeter Array (ALMA) interferometric radio telescope. The estimated column density of the emission lines of NH\(_{2}\)CN using the rotational diagram model was \(N(\mathrm{NH}_{2}\mathrm{CN}) = (6.60\pm 0.1)\times 10^{15}\) cm\(^{-2}\) with rotational temperature (\(T_\mathrm{rot}) = 201.2\pm 3.3\) K. The fractional abundance of NH\(_{2}\)CN with respect to H\(_{2}\) towards the G10.47\(+\)0.03 was \(f(\mathrm{NH}_{2}\mathrm{CN}) = 5.076\times 10^{-8}\). Additionally, the estimated NH\(_{2}\)CN/NH\(_{2}\)CHO abundance ratio towards the G10.47\(+\)0.03 was 0.170, which was nearly similar with NH\(_{2}\)CN/NH\(_{2}\)CHO abundance ratio towards the IRAS 16293–2422 B and Sgr B2 (M). We found that the observed abundance of NH\(_{2}\)CN with respect to H\(_{2}\) towards the G10.47\(+\)0.03, fairly agrees with the theoretical value predicted by Garrod (2013). We also discussed the possible formation and destruction pathways of NH\(_{2}\)CN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://almascience.nao.ac.jp/asax/.

  2. https://casaguides.nrao.edu/.

  3. http://cassis.irap.omp.eu/?page=cassis.

  4. https://cdms.astro.uni-koeln.de/cgi-bin/cdmssearch.

  5. https://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html.

  6. http://kida.astrophy.u-bordeaux.fr/.

References

  • Aladro R., Martín S., Martín-Pintado J. et al. 2011, Astronomy & Astrophyics, 535, A84

    Google Scholar 

  • Brown R. D., Godfrey P. D., Kleibömer B. 1985, Journal of Molecular Spectroscopy, 2, 257

    Article  ADS  Google Scholar 

  • Belloche A., Müller H. S., Menten K. M., Schilke P., Comito C. 2013, Astronomy & Astrophyics, 559, A47

    Google Scholar 

  • Coutens A., Willis E. R., Garrod R. T., et al. 2018, Astronomy & Astrophyics, 612, A107

    Google Scholar 

  • Duvernay F., Chiavassa T., Borget F., Aycard J.-P. 2005, J. Phys. Chem. A, 109, 603

    Article  Google Scholar 

  • Garrod R. T. 2013, The Astrophysical Journal, 765, 60

    Article  ADS  Google Scholar 

  • Gorai P., Bhat B., et al. 2020, The Astrophysical Journal, 895, 86

    Article  ADS  Google Scholar 

  • Goldsmith P. F., Langer W. D. 1999, The Astrophysical Journal, 517, 209

    Article  ADS  Google Scholar 

  • Jiménez-Serra I., Martín-Pintado J., Rivilla V. M., et al. 2020, Astrobiology, 20, 9, 1048

    Article  ADS  Google Scholar 

  • Kilpatrick M. L. 1947, J. Am. Chem. Soc., 69, 40

    Article  Google Scholar 

  • Mondal S. K., Gorai P., Sil M., et al. 2021, arXiv:2108.06240

  • Martín S., Mauersberger R., Martín-Pintado J., Henkel C., García-Burillo S. 2006, The Astrophysical Journal, 164, 2450

    Article  Google Scholar 

  • Marcelino N., Gerin M., Cernicharo J., et al. 2018, Astronomy & Astrophyics, 620, A80

    Google Scholar 

  • Manna A., Pal S. 2022, Life Sciences in Space Research, 34, 9

  • Müller H. S. P., SchlMöder F., Stutzki J., Winnewisser G. 2005, Journal of Molecular Structure, 742, 215

    Article  ADS  Google Scholar 

  • McElroy D., Walsh C., Markwick A. J., et al. 2013, Astronomy & Astrophyics, 550, A36

    Google Scholar 

  • McMullin J. P., Waters B., Schiebel D., Young W., Golap K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, eds Shaw R. A., Hill F., Bell D. J., p. 127

  • Ohishi M., Suzuki T., Hirota T., Saito M., Kaifu N. 2019, Publications of the Astronomical Society of Japan, 71

  • Palau A., Walsh C., Sánchez-Monge Á., et al. 2017, Monthly Notices of the Royal Astronomical Society, 467, 2723

    ADS  Google Scholar 

  • Perley R. A., Butler B. J. 2017, The Astrophysical Journal, 230, 1538

    Google Scholar 

  • Pickett H. M., Poynter R. L., Cohen E. A., et al. 1998, Journal of Quantitative Spectroscopy and Radiative Transfer, 60, 883

    Article  ADS  Google Scholar 

  • Rolffs R., Schilke P., Zhang Q., et al. 2009, Astronomical Society of the Pacific Conference Series, 417, 215

    ADS  Google Scholar 

  • Rolffs R., Schilke P., Zhang Q., Zapata L. 2011, Astronomy & Astrophyics, 536, A33

    Google Scholar 

  • Rivilla V. M., Beltran M. T., Cesaroni R., et al. 2017, Astronomy & Astrophyics, 598, A59

    Google Scholar 

  • Smith I. W. M., Herbst E., Chang Q. 2004, Monthly Notices of the Royal Astronomical Society, 350, 323

    Article  ADS  Google Scholar 

  • Sharma M. K. 2021, Astrophysics, 64, 71

    Article  ADS  Google Scholar 

  • Suzuki T., Ohishi M., Hirota T., et al. 2016, The Astrophysical Journal, 825, 1, 79

    Article  ADS  Google Scholar 

  • Sanna A., Reid M. J., Menten K. M., et al. 2014, The Astrophysical Journal, 781, 108

    Article  ADS  Google Scholar 

  • Turner B. E., Liszt H. S., Kaifu N., Kisliakov A. G. 1975, The Astrophysical Journal, 201, L149

    Article  ADS  Google Scholar 

  • Vastel C., Bottinelli S., Caux E., Glorian J. M., Boiziot M. 2015, in SF2A-2015: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, p. 313

  • Williams A., Ibrahim I. T. 1981, Chem. Rev., 81, 589

    Article  Google Scholar 

  • White G. J., Araki M., Greaves J. S., Ohishi M., Higginbottom N. S. 2003, Astronomy & Astrophyics, 407, 589

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for the helpful comments that improved the manuscript. The plots within this paper and other findings of this study are available from the corresponding author on reasonable request. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00929.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea) in cooperation with the Republic of Chile. Joint ALMA observatory is operated by ESO, AUI/NRAO, and NAOJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Pal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A., Pal, S. Detection of interstellar cyanamide (NH\(_{2}\)CN) towards the hot molecular core G10.47\(+\)0.03. J Astrophys Astron 43, 83 (2022). https://doi.org/10.1007/s12036-022-09868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-022-09868-x

Keywords

Navigation