Skip to main content
Log in

Post-AGB stars as tracers of the origin of elements in the universe

  • Review
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The chemical evolution of galaxies is governed by the chemical yields from stars, especially from Asymptotic Giant Branch (AGB) stars. This underlines the importance of understanding how AGB stars produce their elements by obtaining accurate stellar nucleosynthetic yields. Although AGB nucleosynthesis has general validity, critical uncertainties (such as the treatment of convective-driven mixing processes and mass loss) exist in current stellar models. Observations from post-Asymptotic Giant Branch (post-AGB) stars serve as excellent tools to quantify the strongest discrepancies, and eliminate crucial uncertainties that hamper stellar modelling. Our recent studies of post-AGB stars have shown an intriguing chemical diversity that ranges from stars that are extremely enriched in carbon and s-process elements to the discovery of the first post-AGB star with no traces of carbon nor s-process elements. Additionally, AGB nucleosynthesis is significantly affected by a binary companion. These results reflect the complexity that surrounds the element production in AGB stars. In this review, I will briefly present the intriguing chemical diversity observed in post-AGB stars and its implications on element/isotope production in AGB stars and stellar nucleosynthetic yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure1
Figure2

Similar content being viewed by others

References

  • Abia, C., de Laverny, P., Wahlin, R. 2008, A&A, 481, 161

    ADS  Google Scholar 

  • Abia, C., Domínguez, I., Gallino, R., et al. 2002, ApJ, 579, 817

    ADS  Google Scholar 

  • Boothroyd, A. I., Sackmann, I.-J., Ahern, S. C. 1993, ApJ, 416, 762

    ADS  Google Scholar 

  • Busso, M., Gallino, R., Lambert, D. L., Travaglio, C., Smith, V. V. 2001, ApJ, 557, 802

    ADS  Google Scholar 

  • Cristallo, S., Straniero, O., Piersanti, L., Gobrecht, D. 2015, ApJS, 219, 40

    ADS  Google Scholar 

  • De Marco, O. 2009, Publ. Astron. Soc. Pac., 121, 316

    ADS  Google Scholar 

  • de Ruyter, S., Van Winckel, H., Maas, T., et al. 2006, A&A, 448, 641

    ADS  Google Scholar 

  • De Smedt, K., Van Winckel, H., Kamath, D., et al. 2014, A&A, 563, L5

    ADS  Google Scholar 

  • De Smedt, K., Van Winckel, H., Kamath, D., Wood, P. R. 2015, A&A, 583, A56

    ADS  Google Scholar 

  • De Smedt, K., Van Winckel, H., Karakas, A. I., et al. 2012, A&A, 541, A67

    ADS  Google Scholar 

  • Deroo, P., Goriely, S., Siess, L., Reyniers, M., Van Winckel, H. 2005, Nuclear Physics A, 758, 288

    ADS  Google Scholar 

  • Driebe, T., Schoenberner, D., Bloecker, T., Herwig, F. 1998, A&A, 339, 123

    ADS  Google Scholar 

  • Fishlock, C. K., Karakas, A. I., Lugaro, M., Yong, D. 2014, ApJ, 797, 44

    ADS  Google Scholar 

  • Gallino, R., Arlandini, C., Busso, M., et al. 1998, ApJ, 497, 388

    ADS  Google Scholar 

  • Gezer, I., Van Winckel, H., Bozkurt, Z., et al. 2015, MNRAS, 453, 133

    ADS  Google Scholar 

  • Giridhar, S., Lambert, D. L., Reddy, B. E., Gonzalez, G., Yong, D. 2005, ApJ, 627, 432

    ADS  Google Scholar 

  • Goriely, S., Mowlavi, N. 2000, A&A, 362, 599

    ADS  Google Scholar 

  • Herwig, F. 2005, ARA&A, 43, 435

    ADS  Google Scholar 

  • Herwig, F., Pignatari, M., Woodward, P. R., et al. 2011, ApJ, 727, 89

    ADS  Google Scholar 

  • Kamath, D., Van Winckel, H. 2019, MNRAS, 486, 3524

    ADS  Google Scholar 

  • Kamath, D., Van Winckel, H., Wood, P. R., et al. 2017, ApJ, 836, 15

    ADS  Google Scholar 

  • Kamath, D., Wood, P. R., Van Winckel, H. 2014, MNRAS, 439, 2211

    ADS  Google Scholar 

  • Kamath, D., Wood, P. R., Van Winckel, H. 2015, MNRAS, 454, 1468

    ADS  Google Scholar 

  • Kamath, D., Wood, P. R., Van Winckel, H., Nie, J. D. 2016, A&A, 586, L5

    ADS  Google Scholar 

  • Karakas, A. I., Lattanzio, J. C. 2007, PASA, 24, 103

    ADS  Google Scholar 

  • Karakas, A. I., Lattanzio, J. C. 2014, PASA, 31, e030

    ADS  Google Scholar 

  • Kobayashi, C., Nakasato, N. 2011, ApJ, 729, 16

    ADS  Google Scholar 

  • Lugaro, M., Campbell, S. W., Van Winckel, H., et al. 2015, A&A, 583, A77

    ADS  Google Scholar 

  • Lugaro, M., Karakas, A. I., Stancliffe, R. J., Rijs, C. 2012, ApJ, 747, 2

    ADS  Google Scholar 

  • Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, ArXiv e-prints., arXiv:1804.09376

  • Manick, R., Van Winckel, H., Kamath, D., Hillen, M., Escorza, A. 2017, A&A, 597, A129

    ADS  Google Scholar 

  • Miller Bertolami, M. M. 2016, A&A, 588, A25

    ADS  Google Scholar 

  • Mowlavi, N., Jorissen, A., Arnould, M. 1998, A&A, 334, 153

    ADS  Google Scholar 

  • Neyskens, P., van Eck, S., Jorissen, A., et al. 2015, Nature, 517, 174

    ADS  Google Scholar 

  • Nie, J. D., Wood, P. R., Nicholls, C. P. 2012, MNRAS, 423, 2764

    ADS  Google Scholar 

  • Oomen, G.-M., Pols, O., Van Winckel, H., Nelemans, G. 2020, ArXiv e-prints., arXiv:2008.08097

  • Oomen, G.-M., Van Winckel, H., Pols, O., Nelemans, G. 2019, A&A, 629, A49

    ADS  Google Scholar 

  • Rao, S. S., Giridhar, S., Lambert, D. L. 2012, MNRAS, 419, 1254

    ADS  Google Scholar 

  • Reddy, B. E., Lambert, D. L., Gonzalez, G., Yong, D. 2002, ApJ, 564, 482

    ADS  Google Scholar 

  • Reyniers, M., Van Winckel, H. 2003, A&A, 408, L33

    ADS  Google Scholar 

  • Reyniers, M., Van Winckel, H. 2007, A&A, 463, L1

    ADS  Google Scholar 

  • Romano, D., Karakas, A. I., Tosi, M., Matteucci, F. 2010, A&A, 522, A32

    ADS  Google Scholar 

  • Sloan, G. C., Kraemer, K. E., Wood, P. R., et al. 2008, ApJ, in press, 0807.2998

  • Straniero, O., Gallino, R., Busso, M., et al. 1995, ApJ, 440, L85

    ADS  Google Scholar 

  • van Aarle, E., Van Winckel, H., De Smedt, K., Kamath, D., Wood, P. R. 2013, A&A, 554, A106

    ADS  Google Scholar 

  • Van Winckel, H. 2003, ARA&A, 41, 391

    ADS  Google Scholar 

  • Van Winckel, H., Waelkens, C., Waters, L. B. F. M., et al. 1998, A&A, 336

  • Vassiliadis, E., Wood, P. R. 1993, ApJ, 413, 641

    ADS  Google Scholar 

  • Ventura, P., Di Criscienzo, M., Carini, R., D’Antona, F. 2013, MNRAS, 431, 3642

    ADS  Google Scholar 

  • Ventura, P., Karakas, A. I., Dell’Agli, F., et al. 2015, MNRAS, 450, 3181

    ADS  Google Scholar 

  • Waters, L. B. F. M., Trams, N. R., Waelkens, C. 1992, A&A, 262

Download references

Acknowledgements

The author acknowledges all the brilliant astronomers who have contributed to the field of AGB and post-AGB stars. She acknowledges the support of the Australian Research Council (ARC), Discovery Early Career Research Award (DECRA) Grant (95213534). She also acknowledges the funding provided by the Indian Institute of Astrophysics (IIA), Bangalore that enabled her to attend the conference, “Celebration of 150 Years of Periodic Table: Chemical Elements in the Universe”, which was held at IIA, Bengaluru, India from 16/12/2019 to 19/12/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devika Kamath.

Additional information

This article is part of the Topical Collection: Chemical Elements in the Universe: Origin and Evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamath, D. Post-AGB stars as tracers of the origin of elements in the universe. J Astrophys Astron 41, 42 (2020). https://doi.org/10.1007/s12036-020-09665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-020-09665-4

Keywords

Navigation