Skip to main content
Log in

Higher-speed coronal mass ejections and their geoeffectiveness

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996–2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (\(\mathrm{W} = 360^{\circ }\)); back-side halo coronal mass ejections (\(\mathrm{W} = 360^{\circ })\); partial halo (\(120^{\circ }<\) W \(<\,360^{\circ })\) and non-halo (W \(<\,120^{\circ }\)). From further analysis, we found that front halo coronal mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrews M. D. 2003, Sol. Phys., 218, 261

    Article  ADS  Google Scholar 

  • Cane H. V., Richardson I. G., St Cyr O. C. 2000, Geophys. Res. Lett., 27, 3591

    Article  ADS  Google Scholar 

  • Gopalswamy N., Lara A., Yashiro S., Nunes S., Howard R.A. 2003, in Proceedings of ISCS 2003 Symposium on Solar Variability as an Input to Earth’s Environment. Eur. Space Agency Spec. Publ. ESA-SP, 535, 403

  • Gopalswamy N., Yashiro S., Akiyama S. 2007, J. Geophys. Res., 112, A06112

    Article  ADS  Google Scholar 

  • Gopalswamy N. 2009, Earth Moon Planets 61, 1

    Google Scholar 

  • Gopalswamy N., Yashiro S., Michalek G., Stenborg G., Vourlidas A., Freeland S., Howard R. 2009, Earth Moon Planets 104, 295

    Article  ADS  Google Scholar 

  • Gopalswamy N., Yashiro S., Michalek G., Xie H., Makela P., Vourlidas A., Howard R. A. 2010a, Sun and Geosphere, 5, 7

    ADS  Google Scholar 

  • Gopalswamy N., Xie H., Makela P., Akiyama S., Yashiro S., Kaiser M. L., Howard R. A., Bougeret J. L. 2010b, Appl. Phys. J., 710, 1111

    ADS  Google Scholar 

  • Gopalswamy N., Akiyama S., Yashiro S., Xie H., Mäkelä P., Michalek G. 2014,Geophys.Res. Lett., 41, 2673

    Article  ADS  Google Scholar 

  • Gosling J. T., Bame S. J., McComas D. J., Phillips J.L. 1990, Geophy. Res. Lett., 17, 901

    Article  ADS  Google Scholar 

  • Harrison R. A. 1991, Adv. Space Res., 11, 25

    Article  ADS  Google Scholar 

  • Howard R. A., Michels D. J., Sheeley Jr N. R., Koomen M. J. 1982, Astrophys J., 263, L101

    Article  ADS  Google Scholar 

  • Hudson H. S., Lemon J. R., St Cyr O. C., Sterling A. C., Webb D. F. 1998, Geophys. Res. Lett., 25, 2481

    Article  ADS  Google Scholar 

  • Hundhausen A. J. 1999, Many faces of the Sun, Springer, New York, p. 143

    Book  Google Scholar 

  • Kim R. S., Cho K. S., Moon Y. J., Kim Y. H., Yi Y., Dryer M., Bong S. C., Park Y. D. 2005, J. Geophys Res., 110, A11104

    Article  ADS  Google Scholar 

  • Kim R. S., Cho K. S., Moon Y. J., Dryer M., Lee J., Kim K. H., Wang H., Park Y. D., Kim Y. H. 2010, J. Geophys Res., 115, A12108

    ADS  Google Scholar 

  • Selvakumaran R., Veenadhari B., Akiyama S., Pandya M., Gopalswamy N., Yashiro S., Kumar S., Mäkelä P., Xie H. 2016, J. Geophys. Res. Space Physics, 121, https://doi.org/10.1002/2016JA022885

  • Singh A. K., Singh R. P. 2003, Ind. J. Phys., 77, 611

    Google Scholar 

  • Singh A. K., Tonk A. 2014, Astrophys Spac Sci., 352(2), 367

    Article  ADS  Google Scholar 

  • Singh A. K., Siingh D., Singh R. P. 2010, Surv. Geophys., 31, 581

    Article  ADS  Google Scholar 

  • Singh A. K., Tonk A., Singh R. 2014, Ind. J. Phys., 88(11), 1127

    Article  Google Scholar 

  • Song H., Yurchyshyn V., Yang G., Chen C. W., Wang H. 2006, Sol. Phys. 238, 141

    Article  ADS  Google Scholar 

  • Srivastava N. 2005, Ann. Geophys., 23, 2929

    Article  ADS  Google Scholar 

  • St Cyr O. C. 2000, J. Geophys Res., 105, 18169

    Article  ADS  Google Scholar 

  • Temmer M,. Vergoing A. M., Vrsnak B., Rybak J., Gomory P., Stoiser S., Marricic D. 2008, Astrophys. J., 673, 95

    Article  ADS  Google Scholar 

  • Tousey R. 1973, The solar corona (Berlin: Akademie–Verlag) (eds.) Rycroft MJ, Runcorn SK, pp. 713–730

  • Valach F., Revallo M., Bochnicek J., Hejda P. 2009, Space Weather, 7, S04004

    Article  ADS  Google Scholar 

  • Wang J. L., Gong J. C., Liu S. Q., Le G. M., Sun J. L. 2002, Chin J Astr. Astrophys 2, 557

    Article  ADS  Google Scholar 

  • Webb D. F., Cliver E. W., Crooker N. U., St Cyr O. C., Thompson B. J. 2000, J. Geophys Res., 105, 7491

    Article  ADS  Google Scholar 

  • Webb D. F. 2002, in From Solar Min to Max: Half a Solar Cycle with SOHO, Proceedings of the SOHO 11 Symposium, 1–15 March 2002, Davos, Switzerland. A symposium dedicated to Bonnet RG (Ed.) Wilson A, vol. SP-508 of ESA Special Publications, pp. 409–419, ESA Publications Division, Noordwijk

  • Yashiro S., Gopalswamy N., Michalek G., St Cyr O.C., Plunkett S.P., Rich N.B., Howard R.A. 2004, J. Geophys Res., 109, A07105

    Article  ADS  Google Scholar 

  • Yermolaev Yu. I., Yermolaev M. Yu., 2003, Cosmic Res., 41, 539

    Article  ADS  Google Scholar 

  • Yermolaev Yu. I., Yermolaev M. Yu., Zastenker G. N., Zelenyi L. M., Petrukovich A. A., Sauvaud J. A. 2005, Planet Space Sci., 53, 189

    Article  ADS  Google Scholar 

  • Zhang J., Dere K. P., Howard R. A., Bothmer V. 2003, Astrophys J., 582, 520

    Article  ADS  Google Scholar 

  • Zhang J., Richardson I. G., Webb D. F., Gopalswamy N., Huttunen E., Kasper J. C., Nitta N. V., Poomvises W., Thompson B. J., Wu C. C., Yashiro S., Zhukov A. N. 2007, J. Geophys Res., 112, A10102

    Article  ADS  Google Scholar 

  • Zhao X. P., Webb D. F. 2003, J. Geophy. Res., 108(A6), 1234. https://doi.org/10.1029/2002JA009606

Download references

Acknowledgements

AKS is thankful to Indian Space Research Organization (ISRO) for providing financial support for the present work under CAWSES India phase II program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Bhargawa, A. & Tonk, A. Higher-speed coronal mass ejections and their geoeffectiveness. J Astrophys Astron 39, 32 (2018). https://doi.org/10.1007/s12036-018-9526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-018-9526-5

Keyword

Navigation