Skip to main content
Log in

Helicid Alleviates Neuronal Apoptosis of Rats with Depression-Like Behaviors by Downregulating lncRNA-NONRATT030918.2

  • Research
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Helicid (HEL) has been found to possess antidepressant pharmacological activity. The paper was to testify to the precise molecular mechanism through which HEL regulates lncRNA-NONRATT030918.2 to exert an antidepressant impression in depression models. A depression model stimulated using chronic unpredictable mild stress (CUMS) was created in rats, and the depressive state of the rats was assessed through behavioral experiments. Additionally, an in vitro model of PC12 cells induced by corticosterone (CORT) was established, and cytoactive was tested using the CCK8. The subcellular localization of the NONRATT030918.2 molecule was confirmed through a fluorescence in situ hybridization experiment. The relationship between NONRATT030918.2, miRNA-128-3p, and Prim1 was analyzed using dual-luciferase reporter gene assay, RNA Binding Protein Immunoprecipitation assay, and RNA pull-down assay. The levels of NONRATT030918.2, miRNA-128-3p, and Prim1 were tested using Q-PCR. Furthermore, the levels of Prim1, Bax, Bcl-2, and caspase3 were checked through Western blot. The HEL can alleviate the depression-like behavior of CUMS rats (P < 0.05), and reduce the mortality of hippocampal via downregulating the level of NONRATT030918.2 (P < 0.05). In CORT-induced PC12 cells, intervention with HEL led to decreased expression of NONRATT030918.2 and Prim1 (P < 0.05), as well as increased expression of miRNA-128-3p (P < 0.05). This suggests that HEL regulates the expression of NONRATT030918.2 to upregulate miRNA-128-3p (P < 0.05), which in turn inhibits CORT-induced apoptosis in PC12 cells by targeting Prim1 (P < 0.05). The NONRATT030918.2/miRNA-128-3p/Prim1 axis could potentially serve as a crucial regulatory network for HEL to exert its neuroprotective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, Kelly P, Khan S, Utukuri M, Laird Y, Mok A, Smith A, Tainio M, Brage S, Woodcock J (2022) Association between physical activity and risk of depression: a systematic review and Meta-analysis. JAMA Psychiatry 79(6):550–559. https://doi.org/10.1001/jamapsychiatry.2022.0609

    Article  PubMed  PubMed Central  Google Scholar 

  2. Monroe SM, Harkness KL (2022) Major depression and its recurrences: life course matters. Annu Rev Clin Psychol 18:329–357. https://doi.org/10.1146/annurev-clinpsy-072220-021440

    Article  PubMed  Google Scholar 

  3. Shorey S, Ng ED, Wong CHJ (2022) Global prevalence of depression and elevated depressive symptoms among adolescents: a systematic review and meta-analysis. Br J Clin Psychol 61(2):287–305. https://doi.org/10.1111/bjc.12333

    Article  PubMed  Google Scholar 

  4. Borbély É, Simon M, Fuchs E, Wiborg O, Czéh B, Helyes Z (2022) Novel drug developmental strategies for treatment-resistant depression. Br J Pharmacol 179(6):1146–1186. https://doi.org/10.1111/bph.15753

    Article  CAS  PubMed  Google Scholar 

  5. Wang G, Zhang H, Sun J, Zhang Y, He F, Zou J (2021) Cyclosporin a impairs neurogenesis and cognitive abilities in brain development via the IFN-γ-Shh-BDNF pathway. Int Immunopharmacol 96:107744. https://doi.org/10.1016/j.intimp.2021.107744

    Article  CAS  PubMed  Google Scholar 

  6. Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV (2023) Towards novel potential molecular targets for antidepressant and antipsychotic pharmacotherapies. Int J Mol Sci 24(11):9482. https://doi.org/10.3390/ijms24119482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Crescenzo F, D'Alò GL, Ostinelli EG, Ciabattini M, Di Franco V, Watanabe N, Kurtulmus A, Tomlinson A, Mitrova Z, Foti F, Del Giovane C, Quested DJ, Cowen PJ, Barbui C, Amato L, Efthimiou O, Cipriani A (2022) Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: asystematic review and network meta-analysis. Lancet (London, England) 400(10347):170–184. https://doi.org/10.1016/S0140-6736(22)00878-9

    Article  PubMed  Google Scholar 

  8. Tong J, Zhou Z, Qi W, Jiang S, Yang B, Zhong Z, Jia Y, Li X, Xiong L, Nie L (2019) Antidepressant effect of helicid in chronic unpredictable mild stress model in rats. Int Immunopharmacol 67:13–21. https://doi.org/10.1016/j.intimp.2018.11.052

    Article  CAS  PubMed  Google Scholar 

  9. Li XY, Qi WW, Zhang YX, Jiang SY, Yang B, Xiong L, Tong JC (2019) Helicid ameliorates learning and cognitive ability and activities cAMP/PKA/CREB signaling in chronic unpredictable mild stress rats. Biol Pharm Bull 42(7):1146–1154. https://doi.org/10.1248/bpb.b19-00012

    Article  CAS  PubMed  Google Scholar 

  10. Zhang YX, Zhang XT, Li HJ, Zhou TF, Zhou AC, Zhong ZL, Liu YH, Yuan LL, Zhu HY, Luan D, Tong JC (2021) Antidepressant-like effects of helicid on a chronic unpredictable mild stress-induced depression rat model: inhibiting the IKK/IκBα/NF-κB pathway through NCALD to reduce inflammation. Int Immunopharmacol 93:107165. https://doi.org/10.1016/j.intimp.2020.107165

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XT, Zhang Y, Zhang YX, Jiang ZY, Yang H, Jiang L, Yang B, Tong JC (2021) Helicid reverses the effect of overexpressing NCALD, which blocks the sGC/cGMP/PKG signaling pathway in the CUMS-induced rat model. J Healthc Eng 2021:7168397. https://doi.org/10.1155/2021/7168397

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, Juhasz G, Bagdy G (2019) Genetic variants in major depressive disorder: from pathophysiology to therapy. Pharmacol Ther 194:22–43. https://doi.org/10.1016/j.pharmthera.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Cao C, Wang L, Zhang J, Liu Z, Li M, Xie S, Chen G, Xu X (2022) Neuroligin-1 plays an important role in methamphetamine-induced hippocampal synaptic plasticity. Toxicol Lett 361:1–9. https://doi.org/10.1016/j.toxlet.2022.03.007

    Article  CAS  PubMed  Google Scholar 

  14. Ma WX, Li L, Kong LX, Zhang H, Yuan PC, Huang ZL, Wang YQ (2023) Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice. CNS Neurosci Ther 29(12):4147–4159. https://doi.org/10.1111/cns.14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nestler EJ (2014) Epigenetic mechanisms of depression. JAMA Psychiatry 71(4):454–456. https://doi.org/10.1001/jamapsychiatry.2013.4291

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pei W, Zhang Y, Li X, Luo M, Chen T, Zhang M, Zhong M, Lv K (2020) LncRNA AK085865 depletion ameliorates asthmatic airway inflammation by modulating macrophage polarization. Int Immunopharmacol 83:106450. https://doi.org/10.1016/j.intimp.2020.106450

    Article  CAS  PubMed  Google Scholar 

  17. Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol 220(2):e202009045. https://doi.org/10.1083/jcb.202009045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liao W, Liu Y, Huang H, Xie H, Gong W, Liu D, Tian F, Huang R, Yi F, Zhou J (2021) Intersectional analysis of chronic mild stress-induced lncRNA-mRNA interaction networks in rat hippocampus reveals potential anti-depression/anxiety drug targets. Neurobiol Stress 15:100347. https://doi.org/10.1016/j.ynstr.2021.100347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glavan D, Gheorman V, Gresita A, Hermann DM, Udristoiu I, Popa-Wagner A (2021) Identification of transcriptome alterations in the prefrontal cortex, hippocampus, amygdala and hippocampus of suicide victims. Sci Rep 11(1):18853. https://doi.org/10.1038/s41598-021-98210-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy B, Wang Q, Dwivedi Y (2018) Long noncoding RNA-associated transcriptomic changes in resiliency or susceptibility to depression and response to antidepressant treatment. Int J Neuropsychopharmacol 21(5):461–472. https://doi.org/10.1093/ijnp/pyy010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu XH, Xu LJ, Zheng LL, Yang YJ, Tang ZY, Wu HJ, Chen ZZ, Wang W (2020) Long non-coding RNA uc.80- overexpression promotes M2 polarization of microglias to ameliorate depression in rats. IUBMB Life 72(10):2194–2203. https://doi.org/10.1002/iub.2353

    Article  CAS  PubMed  Google Scholar 

  22. Seki T, Yamagata H, Uchida S, Chen C, Kobayashi A, Kobayashi M, Harada K, Matsuo K, Watanabe Y, Nakagawa S (2019) Altered expression of long noncoding RNAs in patients with major depressive disorder. J Psychiatr Res 117:92–99. https://doi.org/10.1016/j.jpsychires.2019.07.004

    Article  PubMed  Google Scholar 

  23. Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L (2017) Long noncoding RNA expression in peripheral blood mononuclear cells and suicide risk in Chinese patients with major depressive disorder. Brain Behav 7(6):e00711. https://doi.org/10.1002/brb3.711

    Article  PubMed  PubMed Central  Google Scholar 

  24. Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J (2019) Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci Biobehav Rev 99:101–116. https://doi.org/10.1016/j.neubiorev.2018.12.002

    Article  PubMed  Google Scholar 

  25. Guo X, Wu Y, Wang Q, Zhang J, Sheng X, Zheng L, Wang Y (2023) Huperzine a injection ameliorates motor and cognitive abnormalities via regulating multiple pathways in a murine model of Parkinson's disease. Eur J Pharmacol 956:175970. https://doi.org/10.1016/j.ejphar.2023.175970

    Article  CAS  PubMed  Google Scholar 

  26. Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM (2016) Dendritic spines in depression: what we learned from animal models. Neural Plast 2016:8056370. https://doi.org/10.1155/2016/8056370

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zou T, Sugimoto K, Zhang J, Liu Y, Zhang Y, Liang H, Jiang Y, Wang J, Duan G, Mei C (2020) Geniposide alleviates oxidative stress of mice with depression-like behaviors by upregulating Six3os1. Front Cell Dev Biol 8:553728. https://doi.org/10.3389/fcell.2020.553728

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li B, Zhao Y, Zhou X, Peng C, Yan X, Zou T (2023) Geniposide improves depression by promoting the expression of synapse-related proteins through the Creb1/Six3os1 axis. Gene 877:147564. https://doi.org/10.1016/j.gene.2023.147564

    Article  CAS  PubMed  Google Scholar 

  29. Tian JS, Liu SB, He XY, Xiang H, Chen JL, Gao Y, Zhou YZ, Qin XM (2018) Metabolomics studies on corticosterone-induced PC12 cells: a strategy for evaluating an in vitro depression model and revealing the metabolic regulation mechanism. Neurotoxicol Teratol 69:27–38. https://doi.org/10.1016/j.ntt.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  30. Lin R, Liu L, Silva M, Fang J, Zhou Z, Wang H, Xu J, Li T, Zheng W (2021) Hederagenin protects PC12 cells against corticosterone-induced injury by the activation of the PI3K/AKT pathway. Front Pharmacol 12:712876. https://doi.org/10.3389/fphar.2021.712876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, Y., Jin, Y., Yao, S., Nan, G., & Mao, Y. (2022). LncRNA NEAT1 inhibits neuronal apoptosis and induces neuronal viability of depressed rats via microRNA-320-3p/CRHR1 Axis. Neurochem Res. Advance online publication. https://doi.org/10.1007/s11064-021-03508-6

  32. Bai Q, Wang S, Rao D, Zhou Z, Wang J, Wang Q, Qin Y, Chu Z, Zhao S, Yu D, Xu Y (2024) RIPK3 activation promotes DAXX-dependent neuronal necroptosis after intracerebral hemorrhage in mice. CNS Neurosci Ther 30(1):e14397. https://doi.org/10.1111/cns.14397

    Article  CAS  PubMed  Google Scholar 

  33. Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genom Proteom Bioinform 14(2):73–80. https://doi.org/10.1016/j.gpb.2016.03.005

    Article  CAS  Google Scholar 

  34. Wang Q, Xu S, Wang B, Qin Y, Ji Y, Yang Q, Xu Y, Zhou Z (2023) Chemokine receptor 7 mediates miRNA- 182 to regulate cerebral ischemia/reperfusion injury in rats. CNS Neurosci Ther 29(2):712–726. https://doi.org/10.1111/cns.14056

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Zhang Y, Cai W, Liu Y, Liu H, Zhang Z, Su Z (2020) MicroRNA-128-3p alleviates neuropathic pain through targeting ZEB1. Neurosci Lett 729:134946. https://doi.org/10.1016/j.neulet.2020.134946

    Article  CAS  PubMed  Google Scholar 

  36. Qi D, Chen K (2021) Bioinformatics analysis of potential biomarkers and pathway identification for major depressive disorder. Comput Math Methods Med 2021:3036741. https://doi.org/10.1155/2021/3036741

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi M, Fujimori-Tonou N, Yoshimura Y, Kishi T, Okamoto H, Masai I (2008) Mutation of DNA primase causes extensive apoptosis of retinal neurons through the activation of DNA damage checkpoint and tumor suppressor p53. Development (Cambridge, England) 135(7):1247–1257. https://doi.org/10.1242/dev.011015

    Article  CAS  PubMed  Google Scholar 

  38. Hewitt CA, Ling KH, Merson TD, Simpson KM, Ritchie ME, King SL, Pritchard MA, Smyth GK, Thomas T, Scott HS, Voss AK (2010) Gene network disruptions and neurogenesis defects in the adult Ts1Cje mouse model of down syndrome. PLoS One 5(7):e11561. https://doi.org/10.1371/journal.pone.0011561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH, Li W (2021) Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 178(5):1114–1132. https://doi.org/10.1111/bph.15346

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Introduced Talents Special Science Foundation of Yijishan Hospital of Wannan Medical College (grant no. YR202113), the Key Natural Science Research Project of Anhui Provincial Department of Education (grant no. KJ2021A0858), the Scientific Research Foundation for Middle-aged and Young of Yijishan Hospital of Wannan Medical College (grant no. WK2022F12), Wuhu Science and Technology Project in 2022 (grant no. 2022jc55), 2022 Anhui Health Research Key Project (grant no. AHWJ2022a027), and Research Funds of Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM (grant no. 2023CXMMTCM007).

Author information

Authors and Affiliations

Authors

Contributions

Funding acquisition, Jiu-Cui Tong, Yuan-Xiang Zhang, and Xiao-Tong Zhang; methodology, Yuan Zhang, and Zhen-Yi Jiang; resources, Mei Wang; validation, Yuan Zhang, Peng Ge, and Wei Wang; visualization, Zhen-Yi Jiang; writing—original draft, Yuan Zhang. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuan-Xiang Zhang or Jiu-Cui Tong.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the local ethics committee of First Affiliated Hospital of Wannan Medical College (Wuhu, Anhui, China; animal ethics code: WNMC-RATS-2022067; 07 September 2022). All methods were performed in accordance with the relevant guidelines and regulations. The experiments performed in this study also comply with the ARRIVE guidelines 2.0 (https://arriveguidelines.org/).

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuan Zhang and Zhenyi Jiang are the joint first authors of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jiang, ZY., Wang, M. et al. Helicid Alleviates Neuronal Apoptosis of Rats with Depression-Like Behaviors by Downregulating lncRNA-NONRATT030918.2. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04192-7

Keywords

Navigation