Skip to main content
Log in

A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer’s Disease

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a distressing neurodegenerative condition characterized by the accumulation of amyloid-beta (Aβ) plaques and tau tangles within the brain. The interconnectedness between membrane transporters (SLCs) and microRNAs (miRNAs) in AD pathogenesis has gained increasing attention. This review explores the localization, substrates, and functions of SLC transporters in the brain, emphasizing the roles of transporters for glutamate, glucose, nucleosides, and other essential compounds. The examination delves into the significance of SLCs in AD, their potential for drug development, and the intricate realm of miRNAs, encompassing their transcription, processing, functions, and regulation. MiRNAs have emerged as significant players in AD, including those associated with mitochondria and synapses. Furthermore, this review discusses the intriguing nexus of miRNAs targeting SLC transporters and their potential as therapeutic targets in AD. Finally, the review underscores the interaction between SLC transporters and miRNA regulation within the context of Alzheimer’s disease, underscoring the need for further research in this area. This comprehensive review aims to shed light on the complex mechanisms underlying the causation of AD and provides insights into potential therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Soria Lopez JA, González HM, Léger GC (2019) Alzheimer’s disease. Handbook of Clinical Neurology, vol 167. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

  2. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Murphy MP, LeVine H 3rd (2010) Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 19(1):311–323. https://doi.org/10.3233/JAD-2010-1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinsky J, Pichlerova K, Hanes J (2021) Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. Int J Mol Sci 22 (17). https://doi.org/10.3390/ijms22179207

  5. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendez MF (2019) Early-onset Alzheimer disease and its variants. Continuum (Minneap Minn) 25(1):34–51. https://doi.org/10.1212/CON.0000000000000687

    Article  PubMed  Google Scholar 

  7. Matejuk A, Ransohoff RM (2020) Crosstalk between astrocytes and microglia: an overview. Front Immunol 11:1416. https://doi.org/10.3389/fimmu.2020.01416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ (2021) The central role of DNA damage in the ageing process. Nature 592(7856):695–703. https://doi.org/10.1038/s41586-021-03307-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA (2019) Theories of aging and the prevalence of Alzheimer’s disease. BioMed Research International, vol 2019. Hindawi. https://doi.org/10.1155/2019/9171424

  10. Johnson FB, Sinclair DA, Guarente L (1999) Molecular biology of aging. Cell 96(2):291–302. https://doi.org/10.1016/s0092-8674(00)80567-x

    Article  CAS  PubMed  Google Scholar 

  11. Wang QQ, Yin G, Huang JR, Xi SJ, Qian F, Lee RX, Peng XC, Tang FR (2021) Ionizing radiation-induced brain cell aging and the potential underlying molecular mechanisms. Cells 10 (12). https://doi.org/10.3390/cells10123570

  12. Li L, Wang W, Welford S, Zhang T, Wang X, Zhu X (2014) Ionizing radiation causes increased tau phosphorylation in primary neurons. J Neurochem 131(1):86–93. https://doi.org/10.1111/jnc.12769

    Article  CAS  PubMed  Google Scholar 

  13. Cuttler JM, Abdellah E, Goldberg Y, Al-Shamaa S, Symons SP, Black SE, Freedman M (2021) Low doses of ionizing radiation as a treatment for Alzheimer’s disease: a pilot study. J Alzheimers Dis 80(3):1119–1128. https://doi.org/10.3233/JAD-200620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drummond DA, Wilke CO (2009) The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet 10(10):715–724. https://doi.org/10.1038/nrg2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vijg J (2021) From DNA damage to mutations: all roads lead to aging. Ageing Res Rev 68:101316. https://doi.org/10.1016/j.arr.2021.101316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS, Pramodh S, Alsulimani A et al (2022) Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells 11 (3). https://doi.org/10.3390/cells11030552

  17. Trevisan K, Cristina-Pereira R, Silva-Amaral D, Aversi-Ferreira TA (2019) Theories of aging and the prevalence of Alzheimer’s disease. Biomed Res Int 2019:9171424. https://doi.org/10.1155/2019/9171424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blackburn EH (1997) The telomere and telomerase: nucleic acid-protein complexes acting in a telomere homeostasis system. Review Biochem (Mosc) 62(11):1196–1201

    CAS  Google Scholar 

  19. Mobbs CV (2004) Not wisely but too well: aging as a cost of neuroendocrine activity. Sci Aging Knowledge Environ 2004 (35):pe33. https://doi.org/10.1126/sageke.2004.35.pe33

  20. Mao P (1812) Reddy PH (2011) Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer’s disease: implications for early intervention and therapeutics. Biochim Biophys Acta 11:1359–1370. https://doi.org/10.1016/j.bbadis.2011.08.005

    Article  CAS  Google Scholar 

  21. Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:276393. https://doi.org/10.4061/2011/276393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma C, Kim SR (2021) Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants (Basel) 10 (8). https://doi.org/10.3390/antiox10081231

  23. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522. https://doi.org/10.3892/br.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowman GL, Dayon L, Kirkland R, Wojcik J, Peyratout G, Severin IC, Henry H, Oikonomidi A et al (2018) Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement 14(12):1640–1650. https://doi.org/10.1016/j.jalz.2018.06.2857

    Article  PubMed  Google Scholar 

  25. Bhatti GK, Reddy AP, Reddy PH, Bhatti JS (2019) Lifestyle modifications and nutritional interventions in aging-associated cognitive decline and Alzheimer’s disease. Front Aging Neurosci 11:369. https://doi.org/10.3389/fnagi.2019.00369

    Article  CAS  PubMed  Google Scholar 

  26. Dou K-X, Tan M-S, Tan C-C, Cao X-P, Hou X-H, Guo Q-H, Tan L, Mok V et al (2018) Comparative safety and effectiveness of cholinesterase inhibitors and memantine for Alzheimer’s disease: a network meta-analysis of 41 randomized controlled trials. Alzheimer’s Research & Therapy, vol 10. https://doi.org/10.1186/s13195-018-0457-9

  27. Bhutia YD, Babu E, Ramachandran S, Yang S, Thangaraju M, Ganapathy V (2016) SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem J 473(9):1113–1124. https://doi.org/10.1042/BJ20150751

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zhang Y, Sun K, Meng Z, Chen L (2019) The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. Journal of Molecular Cell Biology, vol 11. Oxford Academic. https://doi.org/10.1093/JMCB/MJY052

  29. Ayka A, Şehirli AÖ (2020) The role of the SLC transporters protein in the neurodegenerative disorders. Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology, vol 18. https://doi.org/10.9758/cpn.2020.18.2.174

  30. Hu C, Tao L, Cao X, Chen L (2020) The solute carrier transporters and the brain: physiological and pharmacological implications. Asian Journal of Pharmaceutical Sciences, vol 15. https://doi.org/10.1016/j.ajps.2019.09.002

  31. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531. https://doi.org/10.1126/science.274.5292.1527

    Article  CAS  PubMed  Google Scholar 

  32. Kambeitz JP, Howes OD (2015) The serotonin transporter in depression: meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J Affect Disord 186:358–366. https://doi.org/10.1016/j.jad.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  33. Van Bulck M, Sierra-Magro A, Alarcon-Gil J, Perez-Castillo A, Morales-Garcia JA (2019) Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci 20 (3). https://doi.org/10.3390/ijms20030719

  34. Hu C, Tao L, Cao X, Chen L (2020) The solute carrier transporters and the brain: physiological and pharmacological implications. Asian J Pharm Sci 15(2):131–144. https://doi.org/10.1016/j.ajps.2019.09.002

    Article  PubMed  Google Scholar 

  35. Ayka A, Sehirli AO (2020) The role of the SLC transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci 18(2):174–187. https://doi.org/10.9758/cpn.2020.18.2.174

    Article  CAS  PubMed  Google Scholar 

  36. Vijayan M (1862) Reddy PH (2016) Peripheral biomarkers of stroke: focus on circulatory microRNAs. Biochim Biophys Acta 10:1984–1993. https://doi.org/10.1016/j.bbadis.2016.08.003

    Article  CAS  Google Scholar 

  37. Vijayan M, Kumar S, Yin X, Zafer D, Chanana V, Cengiz P, Reddy PH (2018) Identification of novel circulatory microRNA signatures linked to patients with ischemic stroke. Hum Mol Genet 27(13):2318–2329. https://doi.org/10.1093/hmg/ddy136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94. https://doi.org/10.1016/bs.pmbts.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  39. Williams J, Smith F, Kumar S, Vijayan M, Reddy PH (2017) Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev 35:350–363. https://doi.org/10.1016/j.arr.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  40. Vijayan M, Alamri FF, Al Shoyaib A, Karamyan VT, Reddy PH (2019) Novel miRNA PC-5P-12969 in ischemic stroke. Mol Neurobiol 56(10):6976–6985. https://doi.org/10.1007/s12035-019-1562-x

    Article  CAS  PubMed  Google Scholar 

  41. Reddy PH, Williams J, Smith F, Bhatti JS, Kumar S, Vijayan M, Kandimalla R, Kuruva CS et al (2017) MicroRNAs, aging, cellular senescence, and Alzheimer’s disease. Prog Mol Biol Transl Sci 146:127–171. https://doi.org/10.1016/bs.pmbts.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  42. Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP (2017) A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1156–1165. https://doi.org/10.1016/j.bbrc.2016.08.067

    Article  CAS  PubMed  Google Scholar 

  43. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  44. Kumar S, Vijayan M, Reddy PH (2017) MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet 26(19):3808–3822. https://doi.org/10.1093/hmg/ddx267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang W-X, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. The Journal of Neuroscience, vol 28. https://doi.org/10.1523/JNEUROSCI.5065-07.2008

  46. Jia LH, Liu YN (2016) Downregulated serum miR-223 servers as biomarker in Alzheimer’s disease. Cell Biochemistry and Function, vol 34. John Wiley and Sons Ltd. https://doi.org/10.1002/cbf.3184

  47. Reddy PH, Yin X, Manczak M, Kumar S, Pradeepkiran JA, Vijayan M, Reddy AP (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27(14):2502–2516. https://doi.org/10.1093/hmg/ddy154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Meco A, Praticò D (2016) MicroRNAs as therapeutic targets for Alzheimer’s disease. Journal of Alzheimer’s Disease, vol 53. IOS Press. https://doi.org/10.3233/JAD-160203

  49. Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN (2022) The role of SLC transporters for brain health and disease. Cellular and Molecular Life Sciences, vol 79. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/S00018-021-04074-4/METRICS

  50. Jia Y, Wang N, Zhang Y, Xue D, Lou H, Liu X (2020) Alteration in the function and expression of SLC and ABC transporters in the neurovascular unit in Alzheimer’s disease and the clinical significance. Aging Dis 11(2):390–404. https://doi.org/10.14336/AD.2019.0519

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zaitsev AV, Smolensky IV, Jorratt P, Ovsepian SV (2020) Neurobiology, functions, and relevance of excitatory amino acid transporters (EAATs) to treatment of refractory epilepsy. CNS Drugs, vol 34. https://doi.org/10.1007/s40263-020-00764-y

  52. Malik AR, Willnow TE (2019) Excitatory amino acid transporters in physiology and disorders of the central nervous system. International Journal of Molecular Sciences, vol 20. https://doi.org/10.3390/ijms20225671

  53. Kou L, Sun R, Ganapathy V, Yao Q, Chen R (2018) Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opinion on Therapeutic Targets, vol 22. Taylor \& Francis,

  54. Pardridge WM (2022) A historical review of brain drug delivery. Pharmaceutics 2022, Vol. 14, Page 1283, vol 14. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/PHARMACEUTICS14061283

  55. Ashraf T, Kao A, Bendayan R (2014) Chapter Three — Functional expression of drug transporters in glial cells: potential role on drug delivery to the CNS. Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders, vol 71. Academic Press. https://doi.org/10.1016/bs.apha.2014.06.010

  56. Grbic E, Globocnik Petrovic M, Cilensek I, Petrovic D (2023) SLC22A3 rs2048327 polymorphism is associated with diabetic retinopathy in Caucasians with type 2 diabetes mellitus. Biomedicines 11 (8). https://doi.org/10.3390/biomedicines11082303

  57. Omote H, Miyaji T, Hiasa M, Juge N, Moriyama Y (2016) Structure, function, and drug interactions of neurotransmitter transporters in the postgenomic era. Annu Rev Pharmacol Toxicol 56:385–402. https://doi.org/10.1146/annurev-pharmtox-010814-124816

    Article  CAS  PubMed  Google Scholar 

  58. Castellotti B, Ragona F, Freri E, Solazzi R, Ciardullo S, Tricomi G, Venerando A, Salis B et al (2019) Screening of SLC2A1 in a large cohort of patients suspected for Glut1 deficiency syndrome: identification of novel variants and associated phenotypes. Journal of Neurology, vol 266. https://doi.org/10.1007/s00415-019-09280-6

  59. Koch H, Weber YG (2019) The glucose transporter type 1 (Glut1) syndromes. Epilepsy & Behavior, vol 91. https://doi.org/10.1016/j.yebeh.2018.06.010

  60. Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R, Rainer G, Duarte JMN (2018) Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 66(3):477–491. https://doi.org/10.1002/glia.23259

    Article  PubMed  Google Scholar 

  61. Duerson K, Woltjer RL, Mookherjee P, Leverenz JB, Montine TJ, Bird TD, Pow DV, Rauen T et al (2009) Detergent-insoluble EAAC1/EAAT3 aberrantly accumulates in hippocampal neurons of Alzheimer’s disease patients. Brain Pathology, vol 19. https://doi.org/10.1111/j.1750-3639.2008.00186.x

  62. Szablewski L (2017) Glucose transporters in brain: in health and in Alzheimer’s disease. Journal of Alzheimer’s Disease, vol 55. IOS Press. https://doi.org/10.3233/JAD-160841

  63. Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflügers Archiv - European Journal of Physiology, vol 466. https://doi.org/10.1007/s00424-013-1410-1

  64. Paula-Lima AC, Brito-Moreira J, Ferreira ST (2013) Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem 126(2):191–202. https://doi.org/10.1111/jnc.12304

    Article  CAS  PubMed  Google Scholar 

  65. di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P (2013) Neurosteroid and neurotransmitter alterations in Parkinson’s disease. Front Neuroendocrinol 34(2):132–142. https://doi.org/10.1016/j.yfrne.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  66. Morris ME, Rodriguez-Cruz V, Felmlee MA (2017) SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J 19(5):1317–1331. https://doi.org/10.1208/s12248-017-0110-8

    Article  PubMed  Google Scholar 

  67. Greene C, Campbell M (2016) Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 4(1):e1138017. https://doi.org/10.1080/21688370.2015.1138017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Scott HA, Gebhardt FM, Mitrovic AD, Vandenberg RJ, Dodd PR (2011) Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiol Aging 32 (3):553 e551–511. https://doi.org/10.1016/j.neurobiolaging.2010.03.008

  69. Valtcheva S, Venance L (2019) Control of long-term plasticity by glutamate transporters. Front Synaptic Neurosci 11:10. https://doi.org/10.3389/fnsyn.2019.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Park SH, Zhao H, Peng S, Zuo Z (2014) A critical role of glutamate transporter type 3 in the learning and memory of mice. Neurobiol Learn Mem 114:70–80. https://doi.org/10.1016/j.nlm.2014.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Camacho A, Massieu L (2006) Role of glutamate transporters in the clearance and release of glutamate during ischemia and its relation to neuronal death. Arch Med Res 37(1):11–18. https://doi.org/10.1016/j.arcmed.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  72. Reiner A, Levitz J, Isacoff EY (2015) Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential. Curr Opin Pharmacol 20:135–143. https://doi.org/10.1016/j.coph.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  73. Bridges RJ, Esslinger CS (2005) The excitatory amino acid transporters: pharmacological insights on substrate and inhibitor specificity of the EAAT subtypes. Pharmacol Ther 107(3):271–285. https://doi.org/10.1016/j.pharmthera.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  74. Amantea D, Bagetta G (2017) Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Current Opinion in Pharmacology, vol 35. https://doi.org/10.1016/j.coph.2017.07.014

  75. Schallier A, Smolders I, Dam DV, Loyens E, De Deyn PP, Michotte A, Michotte Y, Massie A (2011) Region-and age-specific changes in glutamate transport in the APP23 mouse model for Alzheimer’s disease. Journal of Alzheimer’s Disease, vol 24. https://doi.org/10.3233/JAD-2010-101005

  76. Leng B, Sun H, Li M, Zhao J, Liu X, Yao R, Shen T, Li Z et al (2022) Blood neuroexosomal excitatory amino acid transporter-2 is associated with cognitive decline in Parkinson’s disease with RBD. Frontiers in Aging Neuroscience, vol 14. https://doi.org/10.3389/fnagi.2022.952368

  77. Hu XT (2020) A novel concept is needed for combating Alzheimer’s disease and neuroHIV. Alzheimers Dis Dement 4(1):85–91. https://doi.org/10.36959/734/377

    Article  PubMed  PubMed Central  Google Scholar 

  78. Errasti-Murugarren E, Palacín M (2022) Heteromeric amino acid transporters in brain: from physiology to pathology. Neurochemical Research, vol 47. https://doi.org/10.1007/s11064-021-03261-w

  79. Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD (2020) Molecular, structural, functional, and pharmacological sites for vesicular glutamate transporter regulation. Molecular Neurobiology, vol 57. https://doi.org/10.1007/s12035-020-01912-7

  80. Zhang F-X, Ge S-N, Dong Y-L, Shi J, Feng Y-P, Li Y, Li Y-Q, Li J-L (2018) Vesicular glutamate transporter isoforms: the essential players in the somatosensory systems. Progress in Neurobiology, vol 171. https://doi.org/10.1016/j.pneurobio.2018.09.006

  81. Hefter D, Draguhn A (2017) APP as a protective factor in acute neuronal insults. Front Mol Neurosci 10:22. https://doi.org/10.3389/fnmol.2017.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Walton HS, Dodd PR (2007) Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int 50(7–8):1052–1066. https://doi.org/10.1016/j.neuint.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  83. Kaur D, Sharma V, Deshmukh R (2019) Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 27(4):663–677. https://doi.org/10.1007/s10787-019-00580-x

    Article  PubMed  Google Scholar 

  84. Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21(1):2–21. https://doi.org/10.1002/(sici)1098-1136(199709)21:1%3c2::aid-glia2%3e3.0.co;2-c

    Article  CAS  PubMed  Google Scholar 

  85. An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O, Chia CW, Egan JM et al (2018) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14(3):318–329. https://doi.org/10.1016/j.jalz.2017.09.011

    Article  PubMed  Google Scholar 

  86. Wright EM (2013) Glucose transport families SLC5 and SLC50. Molecular Aspects of Medicine, vol 34. https://doi.org/10.1016/j.mam.2012.11.002

  87. Głuchowska K, Pliszka M, Szablewski L (2021) Expression of glucose transporters in human neurodegenerative diseases. Biochemical and Biophysical Research Communications, vol 540. https://doi.org/10.1016/j.bbrc.2020.12.067

  88. Singh DD, Shati AA, Alfaifi MY, Elbehairi SEI, Han I, Choi EH, Yadav DK (2022) Development of dementia in type 2 diabetes patients: mechanisms of insulin resistance and antidiabetic drug development. Cells 11 (23). https://doi.org/10.3390/cells11233767

  89. Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V et al (2023) A strategic tool to improve the study of molecular determinants of Alzheimer’s disease: the role of glyceraldehyde. Biochem Pharmacol 218:115869. https://doi.org/10.1016/j.bcp.2023.115869

    Article  CAS  PubMed  Google Scholar 

  90. Dong M, Wen S, Zhou L (2022) The relationship between the blood-brain-barrier and the central effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors. Diabetes Metab Syndr Obes 15:2583–2597. https://doi.org/10.2147/DMSO.S375559

    Article  PubMed  PubMed Central  Google Scholar 

  91. Youssef ME, Yahya G, Popoviciu MS, Cavalu S, Abd-Eldayem MA, Saber S (2023) Unlocking the full potential of SGLT2 inhibitors: expanding applications beyond glycemic control. Int J Mol Sci 24 (7). https://doi.org/10.3390/ijms24076039

  92. Carbo R, Rodriguez E (2023) Relevance of sugar transport across the cell membrane. Int J Mol Sci 24 (7). https://doi.org/10.3390/ijms24076085

  93. Szablewski L (2021) Brain glucose transporters: role in pathogenesis and potential targets for the treatment of Alzheimer’s disease. Int J Mol Sci 22 (15). https://doi.org/10.3390/ijms22158142

  94. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364. https://doi.org/10.1016/j.febslet.2007.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sedzikowska A, Szablewski L (2021) Insulin and insulin resistance in Alzheimer’s disease. Int J Mol Sci 22 (18). https://doi.org/10.3390/ijms22189987

  96. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181. https://doi.org/10.1038/nrneurol.2017.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Milstein JL, Ferris HA (2021) The brain as an insulin-sensitive metabolic organ. Mol Metab 52:101234. https://doi.org/10.1016/j.molmet.2021.101234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Parkinson FE, Damaraju VL, Graham K, Yao SYM, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain

  99. Chen C-Y, Chou F-Y, Chang Y-G, Ho C-J, Wu K-C, Hsu C-L, Chern Y, Lin C-J (2023) Deletion of equilibrative nucleoside transporter 2 disturbs energy metabolism and exacerbates disease progression in an experimental model of Huntington’s disease. Neurobiology of Disease, vol 177. https://doi.org/10.1016/j.nbd.2023.106004

  100. Wu K-C, Lee C-Y, Chou F-Y, Chern Y, Lin C-J (2020) Deletion of equilibrative nucleoside transporter-2 protects against lipopolysaccharide-induced neuroinflammation and blood-brain barrier dysfunction in mice. Brain, Behavior, and Immunity, vol 84. https://doi.org/10.1016/j.bbi.2019.11.008

  101. Chhimpa N, Singh N, Puri N, Prasad H (2023) The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease. vol 94. https://doi.org/10.3233/JAD-220514

  102. Beura SK, Dhapola R, Panigrahi AR, Yadav P, Reddy DH, Singh SK (2022) Redefining oxidative stress in Alzheimer’s disease: targeting platelet reactive oxygen species for novel therapeutic options. Life Sci 306:120855. https://doi.org/10.1016/j.lfs.2022.120855

    Article  CAS  PubMed  Google Scholar 

  103. Boyenle ID, Oyedele AK, Ogunlana AT, Adeyemo AF, Oyelere FS, Akinola OB, Adelusi TI, Ehigie LO et al (2022) Targeting the mitochondrial permeability transition pore for drug discovery: challenges and opportunities. Mitochondrion 63:57–71. https://doi.org/10.1016/j.mito.2022.01.006

    Article  CAS  PubMed  Google Scholar 

  104. Duman RS, Sanacora G, Krystal JH (2019) Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 102(1):75–90. https://doi.org/10.1016/j.neuron.2019.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dienel GA (2019) Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? Journal of Neuroscience Research, vol 97. https://doi.org/10.1002/jnr.24387

  106. Takahashi K, Kong Q, Lin Y, Stouffer N, Schulte DA, Lai L, Liu Q, Chang LC et al (2015) Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J Exp Med 212(3):319–332. https://doi.org/10.1084/jem.20140413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52. https://doi.org/10.1016/s0022-510x(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  108. Prussing K, Voigt A, Schulz JB (2013) Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 8:35. https://doi.org/10.1186/1750-1326-8-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crawford TJ, Higham S, Mayes J, Dale M, Shaunak S, Lekwuwa G (2013) The role of working memory and attentional disengagement on inhibitory control: effects of aging and Alzheimer’s disease. Age (Dordr) 35(5):1637–1650. https://doi.org/10.1007/s11357-012-9466-y

    Article  PubMed  Google Scholar 

  110. Jamieson SE, White JK, Howson JM, Pask R, Smith AN, Brayne C, Evans JG, Xuereb J et al (2005) Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer’s disease. Neurosci Lett 374(2):124–128. https://doi.org/10.1016/j.neulet.2004.10.038

    Article  CAS  PubMed  Google Scholar 

  111. Colas C, Ung PM-U, Schlessinger A (2016) SLC transporters: structure, function, and drug discovery. MedChemComm, vol 7. https://doi.org/10.1039/C6MD00005C

  112. Eide DJ (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447(5):796–800. https://doi.org/10.1007/s00424-003-1074-3

    Article  CAS  PubMed  Google Scholar 

  113. Techau ME, Valdez-Taubas J, Popoff JF, Francis R, Seaman M, Blackwell JM (2007) Evolution of differences in transport function in Slc11a family members. J Biol Chem 282(49):35646–35656. https://doi.org/10.1074/jbc.M707057200

    Article  CAS  PubMed  Google Scholar 

  114. Robinson SM, Canavan M, O’Keeffe ST (2014) Preferences of older people for early diagnosis and disclosure of Alzheimer’s disease (AD) before and after considering potential risks and benefits. Arch Gerontol Geriatr 59(3):607–612. https://doi.org/10.1016/j.archger.2014.07.010

    Article  PubMed  Google Scholar 

  115. Zhang Y, Zhang Y, Sun K, Meng Z, Chen L (2019) The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J Mol Cell Biol 11(1):1–13. https://doi.org/10.1093/jmcb/mjy052

    Article  CAS  PubMed  Google Scholar 

  116. Nguyen YTK, Ha HTT, Nguyen TH, Nguyen LN (2021) The role of SLC transporters for brain health and disease. Cell Mol Life Sci 79(1):20. https://doi.org/10.1007/s00018-021-04074-4

    Article  CAS  PubMed  Google Scholar 

  117. Dickens D, Webb SD, Antonyuk S, Giannoudis A, Owen A, Radisch S, Hasnain SS, Pirmohamed M (2013) Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol 85(11):1672–1683. https://doi.org/10.1016/j.bcp.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  118. Bhunia S, Vangala V, Bhattacharya D, Ravuri HG, Kuncha M, Chakravarty S, Sistla R, Chaudhuri A (2017) Large amino acid transporter 1 selective liposomes of l-DOPA functionalized amphiphile for combating glioblastoma. Mol Pharm 14(11):3834–3847. https://doi.org/10.1021/acs.molpharmaceut.7b00569

    Article  CAS  PubMed  Google Scholar 

  119. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11(9):644–656. https://doi.org/10.1038/nrc3107

    Article  CAS  PubMed  Google Scholar 

  120. Katahira J, Yoneda Y (2011) Nucleocytoplasmic transport of microRNAs and related small RNAs. Traffic 12(11):1468–1474. https://doi.org/10.1111/j.1600-0854.2011.01211.x

    Article  CAS  PubMed  Google Scholar 

  121. Su L, Chen S, Zheng C, Wei H, Song X (2019) Meta-analysis of gene expression and identification of biological regulatory mechanisms in Alzheimer’s disease. Front Neurosci 13:633. https://doi.org/10.3389/fnins.2019.00633

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hu Z, Li Z (2017) miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 45:24–31. https://doi.org/10.1016/j.conb.2017.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marrone DF, Petit TL (2002) The role of synaptic morphology in neural plasticity: structural interactions underlying synaptic power. Brain Res Brain Res Rev 38(3):291–308. https://doi.org/10.1016/s0165-0173(01)00147-3

    Article  PubMed  Google Scholar 

  124. Kumar S (1866) Reddy PH (2020) The role of synaptic microRNAs in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 12:165937. https://doi.org/10.1016/j.bbadis.2020.165937

    Article  CAS  Google Scholar 

  125. Kmetzsch V, Latouche M, Saracino D, Rinaldi D, Camuzat A, Gareau T, French Research Network on FA, Le Ber I, Colliot O, Becker E (2022) MicroRNA signatures in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Ann Clin Transl Neurol 9 (11):1778-1791https://doi.org/10.1002/acn3.51674

  126. Long JM, Ray B, Lahiri DK (2012) MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 287(37):31298–31310. https://doi.org/10.1074/jbc.M112.366336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A et al (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 105(17):6415–6420. https://doi.org/10.1073/pnas.0710263105

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y (2015) Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. International journal of clinical and experimental pathology, vol 8.

  129. Shu B, Zhang X, Du G, Fu Q, Huang L (2018) MicroRNA-107 prevents amyloid-β-induced neurotoxicity and memory impairment in mice. Int J Mol Med, vol 41. The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China. https://doi.org/10.3892/ijmm.2017.3339

  130. Tiribuzi R, Crispoltoni L, Porcellati S, Di Lullo M, Florenzano F, Pirro M, Bagaglia F, Kawarai T et al (2014) miR128 up-regulation correlates with impaired amyloid β(1–42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiology of Aging, vol 35. https://doi.org/10.1016/j.neurobiolaging.2013.08.003

  131. Wang M, Qin L, Tang B (2019) MicroRNAs in Alzheimer’s disease. Front Genet 10:153. https://doi.org/10.3389/fgene.2019.00153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zingale VD, Gugliandolo A, Mazzon E (2021) MiR-155: an important regulator of neuroinflammation. Int J Mol Sci 23 (1). https://doi.org/10.3390/ijms23010090

  133. Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM (2017) MicroRNAs in neurodegenerative diseases. Int Rev Cell Mol Biol 334:309–343. https://doi.org/10.1016/bs.ircmb.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  134. Zhao Y, Zhao R, Wu J, Wang Q, Pang K, Shi Q, Gao Q, Hu Y et al (2018) Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. BioFactors, vol 44. https://doi.org/10.1002/biof.1411

  135. He D, Tan J, Zhang J (2017) miR-137 attenuates Abeta-induced neurotoxicity through inactivation of NF-kappaB pathway by targeting TNFAIP1 in Neuro2a cells. Biochem Biophys Res Commun 490(3):941–947. https://doi.org/10.1016/j.bbrc.2017.06.144

    Article  CAS  PubMed  Google Scholar 

  136. Hu S, Wang H, Chen K, Cheng P, Gao S, Liu J, Li X, Sun X (2015) MicroRNA-34c downregulation ameliorates amyloid-beta-induced synaptic failure and memory deficits by targeting VAMP2. J Alzheimers Dis 48(3):673–686. https://doi.org/10.3233/JAD-150432

    Article  CAS  PubMed  Google Scholar 

  137. Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151. https://doi.org/10.1016/j.brainres.2016.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu Y, Chen P, Wang X, Yao J, Zhuang S (2018) miR-34a deficiency in APP/PS1 mice promotes cognitive function by increasing synaptic plasticity via AMPA and NMDA receptors. Neurosci Lett 670:94–104. https://doi.org/10.1016/j.neulet.2018.01.045

    Article  CAS  PubMed  Google Scholar 

  139. Wang X, Liu D, Huang HZ, Wang ZH, Hou TY, Yang X, Pang P, Wei N et al (2018) A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biol Psychiatry 83(5):395–405. https://doi.org/10.1016/j.biopsych.2017.07.023

    Article  CAS  PubMed  Google Scholar 

  140. Dehghani R, Rahmani F, Rezaei N (2018) MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 29(2):161–182. https://doi.org/10.1515/revneuro-2017-0042

    Article  CAS  PubMed  Google Scholar 

  141. Xie AJ, Hou TY, Xiong W, Huang HZ, Zheng J, Li K, Man HY, Hu YZ et al (2019) Tau overexpression impairs neuronal endocytosis by decreasing the GTPase dynamin 1 through the miR-132/MeCP2 pathway. Aging Cell, vol 18. Blackwell Publishing Ltd. https://doi.org/10.1111/acel.12929

  142. Wang X, Tan L, Lu Y, Peng J, Zhu Y, Zhang Y, Sun Z (2015) MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett 589(6):726–729. https://doi.org/10.1016/j.febslet.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  143. Chu T, Shu Y, Qu Y, Gao S, Zhang L (2018) miR-26b inhibits total neurite outgrowth, promotes cells apoptosis and downregulates neprilysin in Alzheimer’s disease. Int J Clin Exp Pathol 11(7):3383–3390

    PubMed  PubMed Central  Google Scholar 

  144. Zhao ZB, Wu L, Xiong R, Wang LL, Zhang B, Wang C, Li H, Liang L et al (2014) MicroRNA-922 promotes tau phosphorylation by downregulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer’s disease. Neuroscience 275:232–237. https://doi.org/10.1016/j.neuroscience.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  145. Wang G, Huang Y, Wang LL, Zhang YF, Xu J, Zhou Y, Lourenco GF, Zhang B et al (2016) MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci Rep 6:26697. https://doi.org/10.1038/srep26697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu W, Zhao J, Lu G (2016) miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer’s disease. Biochem Biophys Res Commun 478(2):852–857. https://doi.org/10.1016/j.bbrc.2016.08.037

    Article  CAS  PubMed  Google Scholar 

  147. Kang Q, Xiang Y, Li D, Liang J, Zhang X, Zhou F, Qiao M, Nie Y et al (2017) MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3beta pathway in N2a/APP695swe cells. Oncotarget 8(15):24314–24326. https://doi.org/10.18632/oncotarget.15149

    Article  PubMed  PubMed Central  Google Scholar 

  148. Di Meco A, Pratico D (2016) MicroRNAs as therapeutic targets for Alzheimer’s disease. J Alzheimers Dis 53(2):367–372. https://doi.org/10.3233/JAD-160203

    Article  CAS  PubMed  Google Scholar 

  149. Gentile G, Morello G, La Cognata V, Guarnaccia M, Conforti FL, Cavallaro S (2022) Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases. J Pers Med 12 (5). https://doi.org/10.3390/jpm12050770

  150. Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18(5):455–466. https://doi.org/10.3109/1354750X.2013.814073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. An F, Gong G, Wang Y, Bian M, Yu L, Wei C (2017) MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget 8(69):114065–114071. https://doi.org/10.18632/oncotarget.23119

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhou H, Zhang R, Lu K, Yu W, Xie B, Cui D, Jiang L, Zhang Q et al (2016) Deregulation of miRNA-181c potentially contributes to the pathogenesis of AD by targeting collapsin response mediator protein 2 in mice. J Neurol Sci 367:3–10. https://doi.org/10.1016/j.jns.2016.05.038

    Article  CAS  PubMed  Google Scholar 

  153. Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, Qi C, Ge J (2022) MicroRNAs in Alzheimer’s disease: potential diagnostic markers and therapeutic targets. Biomed Pharmacother 148:112681. https://doi.org/10.1016/j.biopha.2022.112681

    Article  CAS  PubMed  Google Scholar 

  154. Kell DB (2021) The transporter-mediated cellular uptake and efflux of pharmaceutical drugs and biotechnology products: how and why phospholipid bilayer transport is negligible in real biomembranes. Molecules 26 (18). https://doi.org/10.3390/molecules26185629

  155. Ikemura K, Iwamoto T, Okuda M (2014) MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: implication for intestinal barrier function. Pharmacology & Therapeutics, vol 143. https://doi.org/10.1016/j.pharmthera.2014.03.002

  156. Yi C, Yu AM (2022) MicroRNAs in the regulation of solute carrier proteins behind xenobiotic and nutrient transport in cells. Front Mol Biosci 9:893846. https://doi.org/10.3389/fmolb.2022.893846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cacabelos R, Torrellas C (2015) Epigenetics of aging and Alzheimer’s disease: implications for pharmacogenomics and drug response. Int J Mol Sci 16(12):30483–30543. https://doi.org/10.3390/ijms161226236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S et al (2022) Regulation of drug transport proteins—from mechanisms to clinical impact: a white paper on behalf of the International Transporter Consortium. Clin Pharmacol Ther 112(3):461–484. https://doi.org/10.1002/cpt.2605

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tajiri A, Hirota T, Kawano S, Yonamine A, Ieiri I (2020) Regulation of organic anion transporting polypeptide 2B1 expression by microRNA in the human liver. Mol Pharm 17(8):2821–2830. https://doi.org/10.1021/acs.molpharmaceut.0c00193

    Article  CAS  PubMed  Google Scholar 

  160. Liu W, Nakano M, Nakanishi T, Nakajima M, Tamai I (2020) Post-transcriptional regulation of OATP2B1 transporter by a microRNA, miR-24. Drug Metab Pharmacokinet 35(6):515–521. https://doi.org/10.1016/j.dmpk.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  161. Wu K-C, Lee C-Y, Chern Y, Lin C-J (2021) Amelioration of lipopolysaccharide-induced memory impairment in equilibrative nucleoside transporter-2 knockout mice is accompanied by the changes in glutamatergic pathways. Brain, Behavior, and Immunity, vol 96. https://doi.org/10.1016/j.bbi.2021.05.027

  162. Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Archiv European Journal of Physiology, vol 447. https://doi.org/10.1007/s00424-003-1146-4

  163. Hagenbuch B, Stieger B (2013) The SLCO (former SLC21) superfamily of transporters. Molecular Aspects of Medicine, vol 34. https://doi.org/10.1016/j.mam.2012.10.009

  164. Verboom MC, Kloth JSL, Swen JJ, van der Straaten T, Bovée JVMG, Sleijfer S, Reyners AKL, Mathijssen RHJ et al (2017) Genetic polymorphisms in angiogenesis-related genes are associated with worse progression-free survival of patients with advanced gastrointestinal stromal tumours treated with imatinib. European Journal of Cancer, vol 86. https://doi.org/10.1016/j.ejca.2017.09.025

  165. Mei Y, Li Y, Cheng Y, Gao L (2023) The effect of gastric bypass surgery on cognitive function of Alzheimer’s disease and the role of GLP1-SGLT1 pathway. Experimental Neurology, vol 363. https://doi.org/10.1016/j.expneurol.2023.114377

  166. Lee C-C, Chang C-P, Lin C-J, Lai H-L, Kao Y-H, Cheng S-J, Chen H-M, Liao Y-P et al (2018) Adenosine augmentation evoked by an ENT1 inhibitor improves memory impairment and neuronal plasticity in the APP/PS1 mouse model of Alzheimer’s disease. Molecular Neurobiology, vol 55. https://doi.org/10.1007/s12035-018-1030-z

  167. Bai X, Moraes TF, Reithmeier RAF (2017) Structural biology of solute carrier (SLC) membrane transport proteins. Molecular Membrane Biology, vol 34. https://doi.org/10.1080/09687688.2018.1448123

  168. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S et al (2015) GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nature Neuroscience, vol 18. https://doi.org/10.1038/nn.3966

  169. BRÖER A, WAGNER C, LANG F, BRÖER S (2000) Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochemical Journal, vol 346. https://doi.org/10.1042/bj3460705

  170. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. In.

  171. Kashani A, Lepicard È, Poirel O, Videau C, David JP, Fallet-Bianco C, Simon A, Delacourte A et al (2008) Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiology of Aging, vol 29. https://doi.org/10.1016/j.neurobiolaging.2007.04.010

  172. Sim AY, Barua S, Kim JY, Lee YH, Lee JE (2021) Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus. Frontiers in Neuroscience, vol 15. Frontiers Media S.A. https://doi.org/10.3389/fnins.2021.708547

  173. Guan H-L, Guan Y, Li W-Y, Liu J-W, Zheng Y-J, Guan Y-Z, Liu H-F, Guan L-X et al (2022) Regulatory role of miR-129 and miR-384–5p on apoptosis induced by oxygen and glucose deprivation in PC12 cell. Experimental Brain Research, vol 240. https://doi.org/10.1007/s00221-021-06236-z

  174. Li Q, Fu X, Kou Y, Han N (2023) Engineering strategies and optimized delivery of exosomes for theranostic application in nerve tissue. Theranostics, vol 13. https://doi.org/10.7150/thno.84971

  175. Majumdar A, Basu A (2022) Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci, vol 47. https://doi.org/10.1007/s12038-022-00288-1

  176. Li Q, Liu S, Yan J, Sun M-Z, Greenaway FT (2021) The potential role of miR-124–3p in tumorigenesis and other related diseases. Molecular Biology Reports, vol 48. https://doi.org/10.1007/s11033-021-06347-4

  177. Banzhaf‐Strathmann J, Benito E, May S, Arzberger T, Tahirovic S, Kretzschmar H, Fischer A, Edbauer D (2014) Micro RNA‐125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. The EMBO Journal, vol 33. EMBO. https://doi.org/10.15252/embj.201387576

  178. Sharma S, Ali YO, Khadimallah I, Williamson AC, Lu HC (2017) [P4–040]: Role of microRNAS in Alzheimer’s disease (AD). Alzheimer’s & Dementia, vol 13. Wiley. https://doi.org/10.1016/j.jalz.2017.06.1904

  179. Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, de Lima MCP, Cardoso AL (2016) MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer’s disease. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, vol 3. Elsevier Inc. https://doi.org/10.1016/j.dadm.2015.11.004

  180. Liu C-g, Wang J-l, Li L, Xue L-x, Zhang Y-q, Wang P-c (2014) MicroRNA-135a and -200b, potential Biomarkers for Alzheimer’s disease, regulate β secretase and amyloid precursor protein. Brain Research, vol 1583. https://doi.org/10.1016/j.brainres.2014.04.026

  181. Wu HZY, Thalamuthu A, Cheng L, Fowler C, Masters CL, Sachdev P, Mather KA (2020) Differential blood miRNA expression in brain amyloid imaging-defined Alzheimer’s disease and controls. Alzheimer’s research & therapy, vol 12. NLM (Medline). https://doi.org/10.1186/s13195-020-00627-0

  182. Xu N, Li A-D, Ji L-L, Ye Y, Wang Z-Y, Tong L (2019) miR-132 regulates the expression of synaptic proteins in APP/PS1 transgenic mice through C1q. European Journal of Histochemistry, vol 63. https://doi.org/10.4081/ejh.2019.3008

  183. Kao YC, Wang IF, Tsai KJ (2018) miRNA-34c overexpression causes dendritic loss and memory decline. International Journal of Molecular Sciences, vol 19. MDPI AG. https://doi.org/10.3390/ijms19082323

  184. V J, Y Z, WJ L (2017) Alterations in micro RNA-messenger RNA (miRNA-mRNA) Coupled signaling networks in sporadic Alzheimer’s disease (AD) hippocampal CA1. Journal of Alzheimer’s Disease & Parkinsonism, vol 07. OMICS Publishing Group. https://doi.org/10.4172/2161-0460.1000312

  185. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, vol 8. https://doi.org/10.1186/gb-2007-8-2-r27

  186. Yan Y, Yan H, Teng Y, Wang Q, Yang P, Zhang L, Cheng H, Fu S (2020) Long non-coding RNA 00507/miRNA-181c-5p/TTBK1/MAPT axis regulates tau hyperphosphorylation in Alzheimer’s disease. Journal of Gene Medicine, vol 22. Blackwell Publishing Inc. https://doi.org/10.1002/jgm.3268

  187. Wang G, Huang Y, Wang L-L, Zhang Y-F, Xu J, Zhou Y, Lourenco GF, Zhang B et al (2016) MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Scientific Reports, vol 6. https://doi.org/10.1038/srep26697

  188. Wang M, Qin L, Tang B (2019) MicroRNAs in Alzheimer’s disease. Frontiers in Genetics, vol 10. Frontiers Media S.A. https://doi.org/10.3389/fgene.2019.00153

  189. Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W et al (2012) The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicology Letters, vol 209. https://doi.org/10.1016/j.toxlet.2011.11.032

  190. Zong Y, Yu P, Cheng H, Wang H, Wang X, Liang C, Zhu H, Qin Y et al (2015) miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer’s disease. Brain Research, vol 1624. et al https://doi.org/10.1016/j.brainres.2015.07.022

  191. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature, vol 439. https://doi.org/10.1038/nature04367

  192. Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron, vol 64. https://doi.org/10.1016/j.neuron.2009.11.023

  193. Basavaraju M, de Lencastre A (2016) Alzheimer’s disease: presence and role of microRNAs. Biomolecular Concepts, vol 7. https://doi.org/10.1515/bmc-2016-0014

  194. Sim SE, Lim CS, Kim JI, Seo D, Chun H, Yu NK, Lee J, Kang SJ et al (2016) The brain-enriched microRNA miR-9–3p regulates synaptic plasticity and memory. Journal of Neuroscience, vol 36. Society for Neuroscience. https://doi.org/10.1523/JNEUROSCI.0630-16.2016

  195. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, Wurst W, Cazalla D et al (2014) MicroRNA-9 controls dendritic development by targeting REST. eLife, vol 3. https://doi.org/10.7554/eLife.02755

  196. Silva MM, Rodrigues B, Fernandes J, Santos SD, Carreto L, Santos MAS, Pinheiro P, Carvalho AL (2019) MicroRNA-186–5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, vol 116. National Academy of Sciences. https://doi.org/10.1073/pnas.1900338116

Download references

Acknowledgements

The authors would like to acknowledge the Texas Tech University Health Sciences Center and VIT University for their valuable support in the completion of this work.

Author information

Authors and Affiliations

Authors

Contributions

M. V. contributed to the conceptualization of the article. M. V. and D. K. designed the framework of the paper. S. M., S. B., and A. D. drafted the manuscript and created the illustrations. M. V. and D. K. revised the manuscript critically. The authors collectively reviewed the manuscript and provided their consent for its publication in its current form.

Corresponding authors

Correspondence to Deepankumar Kanagavel or Murali Vijayan.

Ethics declarations

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to publish the contents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Stany, B., Das, A. et al. A Comprehensive Review of Membrane Transporters and MicroRNA Regulation in Alzheimer’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04135-2

Keywords

Navigation