Skip to main content
Log in

The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson’s Disease

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson’s disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets supporting the findings of this study are included in the article.

Abbreviations

PD:

Parkinson’s disease

L-DOPA:

Levodopa

DA:

Dopamine agonists

DALYs:

Disability-adjusted life years

D3R:

D3 receptors

D2R:

D2 receptors

IR:

Immediate-release

PROUD:

Pramipexole on underlying disease

UPDRS:

Unified Parkinson’s Disease Rating Scale

C max :

Maximum plasma concentration

SKF:

SmithKline and French

CYP:

Cytochrome

PR:

Prolonged release

PPx:

Pramipexole

PK:

Pharmacokinetics

US-FDA:

US Food and Drug Administration

EMA:

European Medicines Agency

EASE-PD:

Efficacy and Safety Evaluation in Parkinson’s Disease

Ropinirole-XL/PR:

Extended/prolonged release

SR:

Sustained-release

Ropinirole-CR:

Controlled-release

AEs:

Adverse events

SMN:

Sensorimotor network

ICA:

Independent component analysis

GTA:

Graph theoretical analysis

References

  1. Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10:. https://doi.org/10.1101/cshperspect.a033118

  2. Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21:1370–1379. https://doi.org/10.1038/S41593-018-0236-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson’s disease. Nat Rev Dis Primers 3:. https://doi.org/10.1038/nrdp.2017.13

  4. Animashaun A, Bernardes G (2021) Noise promotes disengagement in dementia patients during non-invasive neurorehabilitation treatment:9–14. https://doi.org/10.24840/978-972-752-279-8_0009-0014

  5. Wirdefeldt K, Adami HO, Cole P et al (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl):1. https://doi.org/10.1007/S10654-011-9581-6

    Article  Google Scholar 

  6. Owens-Walton C, Jakabek D, Power BD et al (2021) Structural and functional neuroimaging changes associated with cognitive impairment and dementia in Parkinson’s disease. Psychiatry Res Neuroimaging 312:. https://doi.org/10.1016/j.pscychresns.2021.111273

  7. Delenclos M, Jones DR, McLean PJ, Uitti RJ (2016) Biomarkers in Parkinson’s disease: advances and strategies. Parkinsonism Relat Disord 22:. https://doi.org/10.1016/j.parkreldis.2015.09.048

  8. Cruz-Vicente P, Passarinha LA, Silvestre S, Gallardo E (2021) Recent developments in new therapeutic agents against Alzheimer and Parkinson diseases: in-silico approaches. Molecules 26

  9. Pokhabov D V., Abramov VG, Pokhabov DD (2016) Possibilities of non-drug treatment for Parkinson’s disease. Zh Nevrol Psihiatr Im SS Korsakova 116:. https://doi.org/10.17116/jnevro20161168122-29

  10. Picillo M, Phokaewvarangkul O, Poon YY, et al (2021) Levodopa versus dopamine agonist after subthalamic stimulation in Parkinson’s disease. Mov Disord 36:. https://doi.org/10.1002/mds.28382

  11. Mishra A, Singh S, Shukla S (2018) Physiological and functional basis of dopamine receptors and their role in neurogenesis: possible implication for Parkinson’s disease. J Exp Neurosci 12. https://doi.org/10.1177/1179069518779829

  12. Uitti RJ, Ahlskog JE (1996) Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs 5:369–388. https://doi.org/10.2165/00023210-199605050-00006

    Article  CAS  PubMed  Google Scholar 

  13. Korczyn AD, Brunt ER, Larsen JP, et al (1999) A 3-year randomized trial of ropinirole and bromocriptine in early Parkinson’s disease. Neurology 53:. https://doi.org/10.1212/wnl.53.2.364

  14. Montastruc JL, Rascol O, Senard JM, Rascol A (1994) A randomised controlled study comparing bromocriptine to which levodopa was later added, with levodopa alone in previously untreated patients with Parkinson’s disease: a five year follow up. J Neurol Neurosurg Psychiatry 57:. https://doi.org/10.1136/jnnp.57.9.1034

  15. Odekerken VJJ, van Laar T, Staal MJ et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12:37–44. https://doi.org/10.1016/S1474-4422(12)70264-8

    Article  PubMed  Google Scholar 

  16. Heumann R, Moratalla R, Herrero MT et al (2014) Dyskinesia in Parkinson’s disease: mechanisms and current nonpharmacological interventions. J Neurochem 130:472–489. https://doi.org/10.1111/JNC.12751

    Article  CAS  PubMed  Google Scholar 

  17. Thobois S (2006) Proposed dose equivalence for rapid switch between dopamine receptor agonists in Parkinson’s disease: a review of the literature. Clin Ther 28:. https://doi.org/10.1016/j.clinthera.2005.12.003

  18. Stocchi F, Giorgi L, Hunter B, Schapira AH (2011) PREPARED: comparison of prolonged and immediate release ropinirole in advanced Parkinson’s disease. Mov Disord 26:. https://doi.org/10.1002/mds.23498

  19. Stocchi F, Hersh BP, Scott BL et al (2008) Ropinirole 24-hour prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin 24:. https://doi.org/10.1185/03007990802387130

  20. Makumi CW, Asgharian A, Ellis J et al (2016) Long-term, open-label, safety study of once-daily ropinirole extended/prolonged release in early and advanced Parkinson’s disease. Int J Neurosci 126:. https://doi.org/10.3109/00207454.2014.991924

  21. Poewe W, Rascol O, Barone P et al (2011) Extended-release pramipexole in early Parkinson disease a 33-week randomized controlled trial. Neurology 77:. https://doi.org/10.1212/WNL.0b013e31822affb0

  22. Fishman PS (2011) Pramipexole and its extended release formulation for Parkinson’s disease. J Cent Nerv Syst Dis 3:. https://doi.org/10.4137/jcnsd.s5210

  23. Koller WC (1993) Dopaminergic agonists in Parkinson’s disease. Neurology 43:. https://doi.org/10.1097/00002826-198406001-00465

  24. Iravani MM, Haddon CO, Cooper JM et al (2006) Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 96:. https://doi.org/10.1111/j.1471-4159.2005.03625.x

  25. Kuzel MD (1999) Ropinirole: a dopamine agonist for the treatment of Parkinson’s disease. Am J Health-Syst Pharm 56

  26. Iravani MM, Sadeghian M, Leung CCM et al (2008) Continuous subcutaneous infusion of pramipexole protects against lipopolysaccharide-induced dopaminergic cell death without affecting the inflammatory response. Exp Neurol 212:. https://doi.org/10.1016/j.expneurol.2008.04.037

  27. Piercey MF (1998) Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol 21(3):141–151

    CAS  PubMed  Google Scholar 

  28. Fox SH, Katzenschlager R, Lim SY et al (2011) The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord 26:. https://doi.org/10.1002/mds.23829

  29. Gu M, Irvani M, Cooper JM et al (2004) Pramipexole protects against apoptotic cell death by non-dopaminergic mechanisms. J Neurochem 91:. https://doi.org/10.1111/j.1471-4159.2004.02804.x

  30. Swagzdis JE, Wittendorf RW, Demarinis RM, Mico BA (1986) Pharmacokinetics of dopamine‐2 agonists in rats and dogs. J Pharm Sci 75:. https://doi.org/10.1002/jps.2600751002

  31. Schapira AHV, McDermott MP, Barone P et al (2013) Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol 12:. https://doi.org/10.1016/S1474-4422(13)70117-0

  32. Grünewald A, Kumar KR, Sue CM (2019) New insights into the complex role of mitochondria in Parkinson’s disease. Prog Neurobiol 177:73–93. https://doi.org/10.1016/J.PNEUROBIO.2018.09.003

    Article  PubMed  Google Scholar 

  33. Gao J, Wang L, Liu J et al (2017) Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 6:25. https://doi.org/10.3390/ANTIOX6020025

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yin F, Sancheti H, Liu Z, Cadenas E (2016) Mitochondrial function in ageing: coordination with signalling and transcriptional pathways. J Physiol 594:2025–2042. https://doi.org/10.1113/JP270541

    Article  CAS  PubMed  Google Scholar 

  35. Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: new mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18:. https://doi.org/10.1007/S11910-018-0829-3

  36. Yan X, Wang B, Hu Y et al (2020) Abnormal mitochondrial quality control in neurodegenerative diseases. Front Cell Neurosci 14:528247. https://doi.org/10.3389/FNCEL.2020.00138/BIBTEX

    Article  Google Scholar 

  37. Chang KH, Chen CM (2020) The role of oxidative stress in Parkinson’s disease. Antioxidants 9:597. https://doi.org/10.3390/ANTIOX9070597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryan BJ, Hoek S, Fon EA, Wade-Martins R (2015) Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 40:200–210. https://doi.org/10.1016/J.TIBS.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  39. Cho B, Kim T, Huh YJ et al (2019) Amelioration of mitochondrial quality control and proteostasis by natural compounds in Parkinson’s disease models. Int J Mol Sci 20:5208. https://doi.org/10.3390/IJMS20205208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Doblado L, Lueck C, Rey C et al (2021) Mitophagy in human diseases. Int J Mol Sci 22:3903. https://doi.org/10.3390/IJMS22083903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo JD, Zhao X, Li Y et al (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (review). Int J Mol Med 41:1817–1825. https://doi.org/10.3892/IJMM.2018.3406

    Article  CAS  PubMed  Google Scholar 

  42. Shefa U, Jeong NY, Song IO et al (2019) Mitophagy links oxidative stress conditions and neurodegenerative diseases. Neural Regen Res 14:749–756. https://doi.org/10.4103/1673-5374.249218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kung HC, Lin KJ, Kung CT, Lin TK (2021) Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines 9:918. https://doi.org/10.3390/BIOMEDICINES9080918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen Y, Wu Q, Shi J, Zhou S (2020) Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson’s disease. Biomed Pharmacother 132:. https://doi.org/10.1016/J.BIOPHA.2020.110928

  45. Tryphena KP, Nikhil US, Pinjala P et al (2023) Mitochondrial complex I as a pathologic and therapeutic target for Parkinson’s disease. ACS Chem Neurosci. https://doi.org/10.1021/ACSCHEMNEURO.2C00819

    Article  PubMed  Google Scholar 

  46. Rusecka J, Kaliszewska M, Bartnik E, Tońska K (2018) Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J Appl Genet 59:43. https://doi.org/10.1007/S13353-017-0424-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Artyukhova MA, Tyurina YY, Chu CT et al (2019) Interrogating Parkinson’s disease associated redox targets: potential application of CRISPR editing. Free Radic Biol Med 144:279–292. https://doi.org/10.1016/j.freeradbiomed.2019.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Day JO, Mullin S (2021) The genetics of Parkinson’s disease and implications for clinical practice. Genes (Basel) 12:. https://doi.org/10.3390/GENES12071006

  49. Funayama M, Nishioka K, Li Y, Hattori N (2022) Molecular genetics of Parkinson’s disease: contributions and global trends. J Hum Genet 68(3):125–130. https://doi.org/10.1038/s10038-022-01058-5

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gao J, Liu R, Zhao E et al (2015) Head injury, potential interaction with genes, and risk for Parkinson’s disease. Parkinsonism Relat Disord 21:292. https://doi.org/10.1016/J.PARKRELDIS.2014.12.033

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cerri S, Mus L, Blandini F (2019) Parkinson’s disease in women and men: what’s the difference? J Parkinsons Dis 9:501. https://doi.org/10.3233/JPD-191683

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ball N, Teo WP, Chandra S, Chapman J (2019) Parkinson’s disease and the environment. Front Neurol 10:421551. https://doi.org/10.3389/FNEUR.2019.00218/BIBTEX

    Article  Google Scholar 

  53. Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB (2020) Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol Dis 137:. https://doi.org/10.1016/J.NBD.2020.104782

  54. Wilkins HM, Carl SM, Swerdlow RH (2014) Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2:619. https://doi.org/10.1016/J.REDOX.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bose A, Beal MF (2016) Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 139:216–231. https://doi.org/10.1111/JNC.13731

    Article  CAS  PubMed  Google Scholar 

  56. Wei W, Chinnery PF (2020) Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med 287:634–644. https://doi.org/10.1111/JOIM.13047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Picca A, Guerra F, Calvani R et al (2023) The contribution of mitochondrial DNA alterations to aging, cancer, and neurodegeneration. Exp Gerontol 178:. https://doi.org/10.1016/J.EXGER.2023.112203

  58. Zaia A, Maponi P, Zannotti M, Casoli T (2020) Biocomplexity and fractality in the search of biomarkers of aging and pathology: mitochondrial DNA profiling of Parkinson’s disease. Int J Mol Sci 21:1758. https://doi.org/10.3390/IJMS21051758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nido GS, Dölle C, Flønes I et al (2018) Ultradeep mapping of neuronal mitochondrial deletions in Parkinson’s disease. Neurobiol Aging 63:120–127. https://doi.org/10.1016/J.NEUROBIOLAGING.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  60. Grünewald A, Lax NZ, Rocha MC et al (2014) Quantitative quadruple-label immunofluorescence of mitochondrial and cytoplasmic proteins in single neurons from human midbrain tissue. J Neurosci Methods 232:143–149. https://doi.org/10.1016/J.JNEUMETH.2014.05.026

    Article  PubMed  PubMed Central  Google Scholar 

  61. Savu DI, Moisoi N (2022) Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? Biochim Biophys Acta Bioenerg 1863:. https://doi.org/10.1016/j.bbabio.2022.148588

  62. Li JL, Lin TY, Chen PL et al (2021) Mitochondrial function and Parkinson’s disease: from the perspective of the electron transport Chain. Front Mol Neurosci 14:797833. https://doi.org/10.3389/FNMOL.2021.797833/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. González-Rodríguez P, Zampese E, Stout KA et al (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599:650–656. https://doi.org/10.1038/S41586-021-04059-0

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  64. Strope TA, Birky CJ, Wilkins HM (2022) The role of bioenergetics in neurodegeneration. Int J Mol Sci 23:9212. https://doi.org/10.3390/IJMS23169212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hattori N, Mizuno Y (2015) Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 24:103. https://doi.org/10.5607/EN.2015.24.2.103

    Article  Google Scholar 

  66. Kakinuma S, Beppu M, Sawai S et al (2020) Monoamine oxidase B rs1799836 G allele polymorphism is a risk factor for early development of levodopa-induced dyskinesia in Parkinson’s disease. eNeurologicalSci 19:100239. https://doi.org/10.1016/J.ENSCI.2020.100239

    Article  PubMed  PubMed Central  Google Scholar 

  67. Behl T, Kaur D, Sehgal A et al (2021) Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules 26:3724. https://doi.org/10.3390/MOLECULES26123724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A (2017) The 6-hydroxydopamine model and parkinsonian pathophysiology: novel findings in an older model. Neurología (English Edition) 32:533–539. https://doi.org/10.1016/J.NRLENG.2015.06.019

    Article  CAS  Google Scholar 

  69. Endlicher R, Drahota Z, Štefková K et al (2023) The mitochondrial permeability transition pore-current knowledge of its structure, function, and regulation, and optimized methods for evaluating its functional state. Cells 12:. https://doi.org/10.3390/CELLS12091273

  70. Bauer TM, Murphy E (2020) Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 126:280–293. https://doi.org/10.1161/CIRCRESAHA.119.316306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mnatsakanyan N, Park HA, Wu J et al (2022) Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex. Cell Death Differ 29(9):1874–1887. https://doi.org/10.1038/s41418-022-00972-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pérez MJ, Quintanilla RA (2017) Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 426:1–7. https://doi.org/10.1016/J.YDBIO.2017.04.018

    Article  PubMed  Google Scholar 

  73. Norat P, Soldozy S, Sokolowski JD et al (2020) Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen Med 5:. https://doi.org/10.1038/S41536-020-00107-X

  74. Rottenberg H, Hoek JB (2017) The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16:943–955. https://doi.org/10.1111/ACEL.12650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bernardi P, Gerle C, Halestrap AP et al (2023) Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 30(3):1869–1885. https://doi.org/10.1038/s41418-023-01187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rasheed MZ, Tabassum H, Parvez S (2017) Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson’s disease. Protoplasma 254:33–42. https://doi.org/10.1007/S00709-015-0930-2

    Article  CAS  PubMed  Google Scholar 

  77. Shaafi S, Najmi S, Aliasgharpour H et al (2016) The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: a rat model. Iran J Neurol 15(2):63–69

    PubMed  PubMed Central  Google Scholar 

  78. Aradi SD, Hauser RA (2020) Medical management and prevention of motor complications in Parkinson’s disease. Neurotherapeutics 17(4):1339–1365. https://doi.org/10.1007/S13311-020-00889-4

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gandhi KR, Saadabadi A (2023) Levodopa (L-Dopa). StatPearls

  80. Choi J, Horner KA (2023) Dopamine agonists. StatPearls

  81. Zhang Q, Chen X-T, Chen F-F et al (2023) Dopamine agonists versus levodopa monotherapy in early Parkinson’s disease for the potential risks of motor complications: a network meta-analysis. Eur J Pharmacol 954:175884. https://doi.org/10.1016/J.EJPHAR.2023.175884

    Article  CAS  PubMed  Google Scholar 

  82. Kotra LP, Park J (2017) Therapeutic approaches to MS and other neurodegenerative diseases. Compr Med Chem III 5–8:439–473. https://doi.org/10.1016/B978-0-12-409547-2.13766-7

    Article  Google Scholar 

  83. de Farias CC, Bonifácio KL, Matsumoto AK et al (2014) Comparison of the antioxidant potential of antiparkinsonian drugs in different in vitro models. Braz J Pharm Sci 50:819–826. https://doi.org/10.1590/S1984-82502014000400017

    Article  CAS  Google Scholar 

  84. Rewane A, Nagalli S (2022) Ropinirole. xPharm: Compr Pharmacol Ref 1–4. https://doi.org/10.1016/B978-008055232-3.62556-5

  85. Ropinirole - an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/chemistry/ropinirole. Accessed 20 Aug 2023

  86. Davies JA (2007) Dopamine receptor agents. xPharm: Compr Pharmacol Ref 1–2. https://doi.org/10.1016/B978-008055232-3.60984-5

  87. Fabbri M, Rosa MM, Ferreira JJ (2018) Adjunctive therapies in Parkinson’s disease: how to choose the best treatment strategy approach. Drugs Aging 35:1041–1054. https://doi.org/10.1007/S40266-018-0599-2

    Article  PubMed  Google Scholar 

  88. Fabbri M, Barbosa R, Rascol O (2023) Off-time treatment options for Parkinson’s disease. Neurol Ther 12:391. https://doi.org/10.1007/S40120-022-00435-8

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ferraiolo M, Hermans E (2023) The complex molecular pharmacology of the dopamine D2 receptor: implications for pramipexole, ropinirole, and rotigotine. Pharmacol Ther 245:. https://doi.org/10.1016/J.PHARMTHERA.2023.108392

  90. Gao F, Yang J, Wang D et al (2017) Mitophagy in Parkinson’s disease: pathogenic and therapeutic implications. Front Neurol 8:. https://doi.org/10.3389/FNEUR.2017.00527

  91. Vizziello M, Borellini L, Franco G, Ardolino G (2021) Disruption of mitochondrial homeostasis: the role of PINK1 in Parkinson’s disease. Cells 10:. https://doi.org/10.3390/CELLS10113022

  92. Nicoletti V, Palermo G, Del Prete E et al (2021) Understanding the multiple role of mitochondria in Parkinson’s disease and related disorders: lesson from genetics and protein–interaction network. Front Cell Dev Biol 9:. https://doi.org/10.3389/FCELL.2021.636506

  93. Latif S, Jahangeer M, Maknoon Razia D et al (2021) Dopamine in Parkinson’s disease. Clin Chim Acta 522:114–126. https://doi.org/10.1016/J.CCA.2021.08.009

    Article  CAS  PubMed  Google Scholar 

  94. Rademacher K, Nakamura K (2024) Role of dopamine neuron activity in Parkinson’s disease pathophysiology. Exp Neurol 373:114645. https://doi.org/10.1016/J.EXPNEUROL.2023.114645

    Article  CAS  PubMed  Google Scholar 

  95. Gao X-Y, Yang T, Gu Y, Sun X-H (2022) Mitochondrial dysfunction in Parkinson’s disease: from mechanistic insights to therapy. Front Aging Neurosci 14:885500. https://doi.org/10.3389/FNAGI.2022.885500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramesh S, Arachchige ASPM (2023) Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: a review of the literature. AIMS Neurosci 10:200. https://doi.org/10.3934/NEUROSCIENCE.2023017

    Article  PubMed  Google Scholar 

  97. Zampese E, Wokosin DL, Gonzalez-Rodriguez P et al (2022) Ca2+ channels couple spiking to mitochondrial metabolism in substantia nigra dopaminergic neurons. Sci Adv 8:. https://doi.org/10.1126/SCIADV.ABP8701

  98. Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:. https://doi.org/10.1016/J.REDOX.2020.101674

  99. Samson Olagunju A, Ahammad F, Alagbe AA et al (2023) Mitochondrial dysfunction: a notable contributor to the progression of Alzheimer’s and Parkinson’s disease. Heliyon 9:e14387. https://doi.org/10.1016/j.heliyon.2023.e14387

    Article  CAS  Google Scholar 

  100. Grel H, Woznica D, Ratajczak K et al (2023) Mitochondrial dynamics in neurodegenerative diseases: unraveling the role of fusion and fission processes. Int J Mol Sci 24:. https://doi.org/10.3390/IJMS241713033

  101. Chen W, Zhao H, Li Y (2023) Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 8(1):1–25. https://doi.org/10.1038/s41392-023-01547-9

    Article  Google Scholar 

  102. Alshial EE, Abdulghaney MI, Wadan AHS et al (2023) Mitochondrial dysfunction and neurological disorders: a narrative review and treatment overview. Life Sci 334:122257. https://doi.org/10.1016/J.LFS.2023.122257

    Article  CAS  PubMed  Google Scholar 

  103. McGregor MM, Nelson AB (2019) Circuit mechanisms of Parkinson’s disease. Neuron 101:1042–1056. https://doi.org/10.1016/J.NEURON.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  104. Caligiore D, Mannella F, Baldassarre G (2019) Different dopaminergic dysfunctions underlying Parkinsonian Akinesia and tremor. Front Neurosci 13:449849. https://doi.org/10.3389/FNINS.2019.00550/BIBTEX

    Article  Google Scholar 

  105. Kumar S, Goyal L, Singh S (2021) Tremor and rigidity in patients with Parkinson’s disease: emphasis on epidemiology, pathophysiology and contributing factors. CNS Neurol Disord Drug Targets 21:596–609. https://doi.org/10.2174/1871527320666211006142100

    Article  CAS  Google Scholar 

  106. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461. https://doi.org/10.3233/JPD-130230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD (2023) Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 12:517. https://doi.org/10.3390/ANTIOX12020517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sousa JS, D’Imprima E, Vonck J (2018) Mitochondrial respiratory chain complexes. Subcell Biochem 87:167–227. https://doi.org/10.1007/978-981-10-7757-9_7/COVER

    Article  CAS  PubMed  Google Scholar 

  109. Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106–107:17–32. https://doi.org/10.1016/J.PNEUROBIO.2013.04.004

    Article  PubMed  Google Scholar 

  110. Sanders LH, Greenamyren JT (2013) Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic Biol Med 62:111–120. https://doi.org/10.1016/J.FREERADBIOMED.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325. https://doi.org/10.5607/EN.2015.24.4.325

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tryphena KP, Nikhil US, Pinjala P et al (2022) Mitochondrial complex I as a pathologic and therapeutic target for Parkinson’s disease. ACS Chem Neurosci. https://doi.org/10.1021/ACSCHEMNEURO.2C00819/ASSET/IMAGES/MEDIUM/CN2C00819_0003.GIF

    Article  Google Scholar 

  113. Nunes C, Laranjinha J (2021) Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson’s disease. Arch Biochem Biophys 704:. https://doi.org/10.1016/J.ABB.2021.108877

  114. Checa J, Aran JM (2020) Reactive oxygen species: drivers of physiological and pathological processes. J Inflamm Res 13:1057. https://doi.org/10.2147/JIR.S275595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Barrientos A, Moraes CT (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J Biol Chem 274:16188–16197. https://doi.org/10.1074/JBC.274.23.16188

    Article  CAS  PubMed  Google Scholar 

  116. Imbriani P, Martella G, Bonsi P, Pisani A (2022) Oxidative stress and synaptic dysfunction in rodent models of Parkinson’s disease. Neurobiol Dis 173:105851. https://doi.org/10.1016/J.NBD.2022.105851

    Article  CAS  PubMed  Google Scholar 

  117. Brooker SM, Naylor GE, Krainc D (2024) Cell biology of Parkinson’s disease: mechanisms of synaptic, lysosomal, and mitochondrial dysfunction. Curr Opin Neurobiol 85:102841. https://doi.org/10.1016/J.CONB.2024.102841

    Article  CAS  PubMed  Google Scholar 

  118. Henrich MT, Oertel WH, Surmeier DJ, Geibl FF (2023) Mitochondrial dysfunction in Parkinson’s disease – a key disease hallmark with therapeutic potential. Mol Neurodegener 18(1):1–20. https://doi.org/10.1186/S13024-023-00676-7

    Article  Google Scholar 

  119. Guerra F, Girolimetti G, Beli R et al (2019) Synergistic effect of mitochondrial and lysosomal dysfunction in Parkinson’s disease. Cells 8:452. https://doi.org/10.3390/CELLS8050452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Burbulla LF, Song P, Mazzulli JR et al (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357:1255–1261. https://doi.org/10.1126/SCIENCE.AAM9080

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ben-Shachar D (2020) The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson’s disease and in schizophrenia. J Neural Transm (Vienna) 127:159–168. https://doi.org/10.1007/S00702-019-02120-X

    Article  CAS  PubMed  Google Scholar 

  122. Guo J, Zhao X, Li Y et al (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (Review). Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3406

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zahoor I, Shafi A, Haq E (2018) Pharmacological treatment of Parkinson’s disease. Parkinson’s Dis: Pathog Clin Asp 129–144. https://doi.org/10.15586/CODONPUBLICATIONS.PARKINSONSDISEASE.2018.CH7

  124. Suski V, Stacy M (2023) Dopamine agonists. Handbook of Parkinson’s Disease, Fifth Edition 414–429. https://doi.org/10.5005/jp/books/10587_26

  125. Schapira AHV (2002) Dopamine agonists and neuroprotection in Parkinson’s disease. Eur J Neurol 9:7–14. https://doi.org/10.1046/J.1468-1331.9.S3.9.X

    Article  PubMed  Google Scholar 

  126. Murakami H, Shiraishi T, Umehara T et al (2023) Recent advances in drug therapy for Parkinson’s disease. Intern Med 62:33–42. https://doi.org/10.2169/INTERNALMEDICINE.8940-21

    Article  CAS  PubMed  Google Scholar 

  127. Garg D, Desai S (2021) Neuroprotective strategies in Parkinson’s disease: a long road ahead.https://doi.org/10.4103/AOMD.AOMD_38_21

  128. Naren P, Cholkar A, Kamble S et al (2023) Pathological and therapeutic advances in Parkinson’s disease: mitochondria in the interplay. J Alzheimer’s Dis 94:S399–S428. https://doi.org/10.3233/JAD-220682

    Article  CAS  Google Scholar 

  129. Ahmed MR, Inayathullah M, Morton M et al Intranasal Delivery of liposome encapsulated flavonoids ameliorates L-DOPA induced dyskinesia in Hemiparkinsonian mice. https://doi.org/10.2139/SSRN.4711132

  130. Nishikawa N, Iwaki H, Mukai Y, Takahashi Y (2023) Classification of l-DOPA pharmacokinetics shapes and creating a predictive model. Parkinsonism Relat Disord 114:105798. https://doi.org/10.1016/J.PARKRELDIS.2023.105798

    Article  CAS  PubMed  Google Scholar 

  131. Risiglione P, Zinghirino F, Di Rosa MC et al (2021) Alpha-synuclein and mitochondrial dysfunction in Parkinson’s disease: the emerging role of VDAC. Biomolecules 11:. https://doi.org/10.3390/BIOM11050718

  132. Dorszewska J, Prendecki M, Lianeri M, Kozubski W (2014) Molecular effects of L-dopa therapy in Parkinson’s disease. Curr Genomics 15:11. https://doi.org/10.2174/1389202914666131210213042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Picca A, Guerra F, Calvani R et al (2021) Mitochondrial dysfunction, protein misfolding and neuroinflammation in Parkinson’s disease: roads to biomarker discovery. Biomolecules 11:. https://doi.org/10.3390/BIOM11101508

  134. Golpich M, Amini E, Mohamed Z et al (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23:5. https://doi.org/10.1111/CNS.12655

    Article  PubMed  Google Scholar 

  135. Wang Y, Liu N, Lu B (2019) Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 25:859. https://doi.org/10.1111/CNS.13140

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang XL, Feng ST, Wang YT et al (2021) Mitophagy, a form of selective autophagy, plays an essential role in mitochondrial dynamics of Parkinson’s disease. Cell Mol Neurobiol 42(5):1321–1339. https://doi.org/10.1007/S10571-021-01039-W

    Article  PubMed  Google Scholar 

  137. Subrahmanian N, LaVoie MJ (2021) Is there a special relationship between complex I activity and nigral neuronal loss in Parkinson’s disease? A critical reappraisal. Brain Res 1767:. https://doi.org/10.1016/J.BRAINRES.2021.147434

  138. Thirugnanam T, Santhakumar K (2022) Chemically induced models of Parkinson’s disease. Comp Biochem Physiol C Toxicol Pharmacol 252:. https://doi.org/10.1016/J.CBPC.2021.109213

  139. Zeng XS, Geng WS, Jia JJ (2018) Neurotoxin-induced animal models of Parkinson disease: pathogenic mechanism and assessment. ASN Neuro 10:. https://doi.org/10.1177/1759091418777438

  140. Imbriani P, Schirinzi T, Meringolo M et al (2018) Centrality of early synaptopathy in Parkinson’s disease. Front Neurol 9:340683. https://doi.org/10.3389/FNEUR.2018.00103/BIBTEX

    Article  Google Scholar 

  141. Imbriani P, Sciamanna G, Santoro M et al (2018) Promising rodent models in Parkinson’s disease. Parkinsonism Relat Disord 46(Suppl 1):S10–S14. https://doi.org/10.1016/J.PARKRELDIS.2017.07.027

    Article  PubMed  Google Scholar 

  142. Innos J, Hickey MA (2021) Using rotenone to model Parkinson’s disease in mice: a review of the role of pharmacokinetics. Chem Res Toxicol 34:1223–1239. https://doi.org/10.1021/ACS.CHEMRESTOX.0C00522

    Article  CAS  PubMed  Google Scholar 

  143. Imbriani P, Martella G, Bonsi P, Pisani A (2022) Oxidative stress and synaptic dysfunction in rodent models of Parkinson’s disease. Neurobiol Dis 173:. https://doi.org/10.1016/J.NBD.2022.105851

  144. Koprich JB, Kalia LV, Brotchie JM (2017) Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 18:515–529. https://doi.org/10.1038/NRN.2017.75

    Article  CAS  PubMed  Google Scholar 

  145. Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front Neurosci 10:. https://doi.org/10.3389/FNINS.2016.00408

  146. Portz P, Lee MK (2021) Changes in drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson’s disease. Cells 10:885. https://doi.org/10.3390/CELLS10040885/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Venderova K, Park DS Programmed cell death in Parkinson’s disease. https://doi.org/10.1101/cshperspect.a009365

  148. Zacharioudakis E, Agianian B, Kumar MV V et al (2022) Modulating mitofusins to control mitochondrial function and signaling. Nat Commun 13:. https://doi.org/10.1038/S41467-022-31324-1

  149. Dorn GW (2020) Mitofusins as mitochondrial anchors and tethers. J Mol Cell Cardiol 142:146. https://doi.org/10.1016/J.YJMCC.2020.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Thorne NJ, Tumbarello DA (2022) The relationship of alpha-synuclein to mitochondrial dynamics and quality control. Front Mol Neurosci 15:. https://doi.org/10.3389/FNMOL.2022.947191

  151. Merino-Galán L, Jimenez-Urbieta H, Zamarbide M et al (2022) Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 145:2092–2107. https://doi.org/10.1093/BRAIN/AWAC087

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vergara RC, Jaramillo-Riveri S, Luarte A et al (2019) The energy homeostasis principle: neuronal energy regulation drives local network dynamics generating behavior. Front Comput Neurosci 13:49. https://doi.org/10.3389/FNCOM.2019.00049

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chamberlain KA, Sheng ZH (2019) Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 97:897. https://doi.org/10.1002/JNR.24411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Anandhan A, Jacome MS, Lei S et al (2017) Metabolic dysfunction in Parkinson’s disease: bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull 133:12–30. https://doi.org/10.1016/J.BRAINRESBULL.2017.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tian Y, He M, Pan L et al (2021) Transgenic mice expressing human α-synuclein 1–103 fragment as a novel model of Parkinson’s disease. Front Aging Neurosci 13:. https://doi.org/10.3389/FNAGI.2021.760781/FULL

  156. Bridi JC, Hirth F (2018) Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci 12:338212. https://doi.org/10.3389/FNINS.2018.00080/BIBTEX

    Article  Google Scholar 

  157. Durante V, De Iure A, Loffredo V et al (2019) Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain 142:1365–1385. https://doi.org/10.1093/BRAIN/AWZ065

    Article  PubMed  Google Scholar 

  158. Tozzi A, de Iure A, Bagetta V et al (2016) Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-D-aspartate receptor subunit. Biol Psychiatry 79:402–414. https://doi.org/10.1016/J.BIOPSYCH.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  159. Tozzi A, Sciaccaluga M, Loffredo V et al (2021) Dopamine-dependent early synaptic and motor dysfunctions induced by α-synuclein in the nigrostriatal circuit. Brain 144:3477–3491. https://doi.org/10.1093/BRAIN/AWAB242

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kulkarni AS, Burns MR, Brundin P, Wesson DW (2022) Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson’s disease. Brain Commun 4:. https://doi.org/10.1093/BRAINCOMMS/FCAC165

  161. Erustes AG, D’Eletto M, Guarache GC et al (2021) Overexpression of α-synuclein inhibits mitochondrial Ca2+ trafficking between the endoplasmic reticulum and mitochondria through MAMs by altering the GRP75-IP3R interaction. J Neurosci Res 99:2932–2947. https://doi.org/10.1002/JNR.24952

    Article  CAS  PubMed  Google Scholar 

  162. Li Y, Yuan Y, Li Y et al (2021) Inhibition of α -synuclein accumulation improves neuronal apoptosis and delayed postoperative cognitive recovery in aged mice. Oxid Med Cell Longev 2021:. https://doi.org/10.1155/2021/5572899

  163. Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernández MA et al (2020) Alpha-synuclein physiology and pathology: a perspective on cellular structures and organelles. Front Neurosci 13:502007. https://doi.org/10.3389/FNINS.2019.01399/BIBTEX

    Article  Google Scholar 

  164. Kaye CM, Nicholls B (2000) Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet 39:243–254. https://doi.org/10.2165/00003088-200039040-00001

    Article  CAS  PubMed  Google Scholar 

  165. Matheson AJ, Spencer CM (2000) Ropinirole: a review of its use in the management of Parkinson’s disease. Drugs 60:115–137. https://doi.org/10.2165/00003495-200060010-00007

    Article  CAS  PubMed  Google Scholar 

  166. Ramji J V., Keogh JP, Blake TJ et al (1999) Disposition of ropinirole in animals and man. Xenobiotica 29:. https://doi.org/10.1080/004982599238696

  167. Bloomer JC, Clarke SE, Chenery RJ (1997) In vitro identification of the P450 enzymes responsible for the metabolism of ropinirole. Drug Metab Dispos 25(7):840–0844

    CAS  PubMed  Google Scholar 

  168. Adler CH, Sethi KD, Hauser RA et al (1997) Ropinirole for the treatment of early Parkinson’s disease. Neurology 49:. https://doi.org/10.1212/WNL.49.2.393

  169. Batla A, Stamelou M, Mencacci N et al (2013) Ropinirole monotherapy induced severe reversible dyskinesias in Parkinson’s disease. Mov Disord 28:1159. https://doi.org/10.1002/MDS.25318

    Article  PubMed  PubMed Central  Google Scholar 

  170. Pahwa R, Stacy MA, Factor SA et al (2007) Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology 68:. https://doi.org/10.1212/01.wnl.0000258660.74391.c1

  171. Zhang Z, Wang J, Zhang X et al (2015) An open-label extension study to evaluate the safety of ropinirole prolonged release in Chinese patients with advanced Parkinson’s disease. Curr Med Res Opin 31:. https://doi.org/10.1185/03007995.2015.1005835

  172. Claxton AJ, Cramer J, Pierce C (2001) A systematic review of the associations between dose regimens and medication compliance. Clin Ther 23:. https://doi.org/10.1016/S0149-2918(01)80109-0

  173. Watts RL, Lyons KE, Pahwa R et al (2010) Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord 25:. https://doi.org/10.1002/mds.22890

  174. Ray Chaudhuri K, Martinez-Martin P, Rolfe KA et al (2012) Improvements in nocturnal symptoms with ropinirole prolonged release in patients with advanced Parkinson’s disease. Eur J Neurol 19:. https://doi.org/10.1111/j.1468-1331.2011.03442.x

  175. Hubble JP (2002) Long-term studies of dopamine agonists. Neurology 58

  176. Hametner EM, Seppi K, Poewe W (2011) Pramipexole extended release in Parkinson’s disease. Expert Rev Neurother 11:. https://doi.org/10.1586/ern.11.122

  177. Salawu FK (2012) Patient considerations in early management of Parkinson’s disease: focus on extended-release pramipexole. Patient Prefer Adherence 6:. https://doi.org/10.2147/PPA.S11841

  178. Jenner P, Könen-Bergmann M, Schepers C, Haertter S (2009) Pharmacokinetics of a once-daily extended-release formulation of pramipexole in healthy male volunteers: three studies. Clin Ther 31:. https://doi.org/10.1016/j.clinthera.2009.10.018

  179. Hauser RA, Schapira AHV, Barone P et al (2014) Long-term safety and sustained efficacy of extended-release pramipexole in early and advanced Parkinson’s disease. Eur J Neurol 21:. https://doi.org/10.1111/ene.12375

  180. Shen Z, Kong D (2018) Meta-analysis of the adverse events associated with extended-release versus standard immediate-release pramipexole in Parkinson disease. Medicine (United States) 97:. https://doi.org/10.1097/MD.0000000000011316

  181. Coldwell MC, Boyfield I, Brown T et al (1999) Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D(2(long)), D3 and D4.4 receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 127:. https://doi.org/10.1038/sj.bjp.0702673

  182. Hattori N, Hasegawa K, Sato K et al (2017) Clinical evaluation of ropinirole controlled-release formulation at 18–24 mg/day in Japanese patients with Parkinson’s disease. Parkinsonism Relat Disord 40:. https://doi.org/10.1016/j.parkreldis.2017.04.005

Download references

Acknowledgements

Support of the Department of Science and Technology, DST PURSE grant (No. SR/PURSE Phase 2/39[C]), and DST FIST (No. SR/FST/LS-I/2017/05[C]) to Jamia Hamdard is acknowledged. The authors would like to thank the Indian Council of Medical Research (ICMR) for supporting Suhel Parvez (No. 36/9/2020-Toxi/BMS). Ms. Neha received the Senior Research Fellowship from the DST-INSPIRE (File No. DST/INSPIRE/03/2019/001769. IVR No. 201900031405]. Senior Research Fellowship from ICMR (No. 45/41/2019-NAN-BMS) to Dr. Pooja Kaushik is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

P.K. and S.P. designed the review; N., I.M., and S.A.K. wrote the review. S.P. acquired the funding.

Corresponding authors

Correspondence to Pooja Kaushik or Suhel Parvez.

Ethics declarations

Ethics Approval

No animal experimentation was done for this review.

Consent to Participate

Not applicable.

Consent for Publication

All authors have approved the final version of the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neha, Mazahir, I., Khan, S.A. et al. The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04078-8

Keywords

Navigation