Skip to main content

Advertisement

Log in

The Role of Nicotine Metabolic Rate on Nicotine Dependence and Rewarding: Nicotine Metabolism in Chinese Male Smokers and Male Mice

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The exact relationship between nicotine metabolism and dependence is not fully understood but is known to be influenced at a molecular level by genetic factors. A sample comprising 274 Chinese adult male smokers was categorized into groups based on their metabolic rates, namely fast, intermediate, and slow metabolizers. We then measured their smoking topography, evaluated their nicotine dependence, and assessed the rewarding effects. Based on these findings, we proposed the hypothesis that the rate of nicotine metabolism could influence the level of dopamine release which in turn had repercussions on the pleasurable and rewarding effects. To test this hypothesis, male mice were selected with different nicotine metabolic rates that closely resembled in the smoker group. We evaluated their nicotine dependence and rewarding effects through conditioned place preference and withdrawal symptom tests, supplemented with dopamine release measurements. In both animal and human, the slow metabolism group (SMG) required less nicotine to maintain a comparable level of dependence than the fast metabolism group (FMG). The SMG could achieve similar rewarding effects to FMG despite consuming less nicotine. Comparable dopamine levels released were therefore critical in setting the nicotine acquisition behavior in this animal model and also for the smokers tested. Our findings suggested that even within the same ethnicity of established smokers (Chinese Han), differences in nicotine metabolism were an important parameter to modulate the degree of nicotine dependence.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data in this study are available on request from the corresponding authors.

References

  1. Benowitz NL (2008) Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther 83:531–541

    Article  CAS  PubMed  Google Scholar 

  2. Pimentel E, Sivalingam K, Doke M, Samikkannu T (2020) Effects of drugs of abuse on the blood-brain barrier: a brief overview. Front Neurosci 14:513

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rose JE, Mukhin AG, Lokitz SJ, Turkington TG, Herskovic J, Behm FM, Garg S, Garg PK (2010) Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc Natl Acad Sci USA 107:5190–5195

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tanner J-A, Chenoweth MJ, Tyndale RF (2015) Pharmacogenetics of nicotine and associated smoking behaviors. Neurobiol Gen Nicot Tobacco 23:37–86

    Article  CAS  Google Scholar 

  6. Raunio H, Rahnasto-Rilla M (2012) CYP2A6: genetics, structure, regulation, and function. Drug Metab Drug Interact 27:73–88

    Article  CAS  Google Scholar 

  7. Ray R, Tyndale RF, Lerman C (2009) Nicotine dependence pharmacogenetics: role of genetic variation in nicotine-metabolizing enzymes. J Neurogenet 23:252–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu C, Goodz S, Sellers EM, Tyndale RF (2002) CYP2A6 genetic variation and potential consequences. Adv Drug Deliv Rev 54:1245–1256

    Article  CAS  PubMed  Google Scholar 

  9. Kim J-H, Cheong HS, Park BL, Kim LH, Shin HJ, Na HS, Chung MW, Shin HD (2015) Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations. Arch Pharmacal Res 38:115–128

    Article  CAS  Google Scholar 

  10. Inoue K, Yamazaki H, Shimada T (2000) CYP2A6 genetic polymorphisms and liver microsomal coumarin and nicotine oxidation activities in Japanese and Caucasians. Arch Toxicol 73:532–539

    Article  CAS  PubMed  Google Scholar 

  11. Nunoya KI, Yokoi T, Kimura K, Kainuma T, Satoh K, Kinoshita M, Kamataki T (1999) A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans. J Pharmacol Exp Ther 289:437–442

    CAS  PubMed  Google Scholar 

  12. Raunio H, Rautio A, Gullstén H, Pelkonen O (2001) Polymorphisms of CYP2A6 and its practical consequences. Br J Clin Pharmacol 52:357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nurfadhlina M, Foong K, Teh L, Tan S, Zaki SM, Ismail R (2006) CYP2A6 polymorphisms in Malays, Chinese and Indians. Xenobiotica 36:684–692

    Article  CAS  PubMed  Google Scholar 

  14. Nakajima M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, Kwon JT, McLeod HL et al (2006) Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin Pharmacol Ther 80:282–297

    Article  CAS  PubMed  Google Scholar 

  15. Schoedel KA, Hoffmann EB, Rao Y, Sellers EM, Tyndale RF (2004) Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics 14:615–626

    Article  CAS  PubMed  Google Scholar 

  16. Audrain-McGovern J, Al Koudsi N, Rodriguez D, Wileyto EP, Shields PG, Tyndale RF (2007) The role of CYP2A6 in the emergence of nicotine dependence in adolescents. Pediatrics 119:e264-274

    Article  PubMed  Google Scholar 

  17. Minematsu N, Nakamura H, Furuuchi M, Nakajima T, Takahashi S, Tateno H, Ishizaka A (2006) Limitation of cigarette consumption by CYP2A6*4, *7 and *9 polymorphisms. Eur Respir J 27:289–292

    Article  CAS  PubMed  Google Scholar 

  18. Malaiyandi V, Lerman C, Benowitz NL, Jepson C, Patterson F, Tyndale RF (2006) Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy. Mol Psychiatry 11:400–409

    Article  CAS  PubMed  Google Scholar 

  19. Gyamfi MA, Fujieda M, Kiyotani K, Yamazaki H, Kamataki T (2005) High prevalence of cytochrome P 450 2A6* 1A alleles in a black African population of Ghana. Eur J Clin Pharmacol 60:855–857

    Article  CAS  PubMed  Google Scholar 

  20. Liu T, David SP, Tyndale RF, Wang H, Zhou Q, Ding P, He YH, Yu XQ et al (2011) Associations of CYP2A6 genotype with smoking behaviors in southern China. Addiction 106:985–994

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oscarson M, McLellan RA, Gullstén H, Yue QY, Lang MA, Bernal ML, Sinues B, Hirvonen A et al (1999) Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett 448:105–110

    Article  CAS  PubMed  Google Scholar 

  22. Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T et al (2010) Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones SK, Wolf BJ, Froeliger B, Wallace K, Carpenter MJ, Alberg AJ (2022) Nicotine metabolism predicted by CYP2A6 genotypes in relation to smoking cessation: a systematic review. Nicotine Tob Res 24:633–642

    Article  CAS  PubMed  Google Scholar 

  24. Rubinstein ML, Benowitz NL, Auerback GM, Moscicki A-B (2008) Rate of nicotine metabolism and withdrawal symptoms in adolescent light smokers. Pediatrics 122:e643–e647

    Article  PubMed  Google Scholar 

  25. Lerman C, Tyndale R, Patterson F, Wileyto EP, Shields PG, Pinto A, Benowitz N (2006) Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther 79:600–608

    Article  CAS  PubMed  Google Scholar 

  26. Kaufmann A, Hitsman B, Goelz PM, Veluz-Wilkins A, Blazekovic S, Powers L, Leone FT, Gariti P et al (2015) Rate of nicotine metabolism and smoking cessation outcomes in a community-based sample of treatment-seeking smokers. Addict Behav 51:93–99

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kulak JA, Cornelius ME, Fong GT, Giovino GA (2016) Differences in quit attempts and cigarette smoking abstinence between whites and African Americans in the United States: literature review and results from the International Tobacco Control US Survey. Nicotine Tob Res 18:S79–S87

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu JH, Xun XJ, Pang C, Ma J, Zou H, Chen C, Dai PG (2014) Single tube genotyping of CYP2A6 gene deletion based on copy number determination by quantitative real-time PCR. Exp Mol Pathol 97:529–534

    Article  CAS  PubMed  Google Scholar 

  29. Chenoweth MJ, O’Loughlin J, Sylvestre MP, Tyndale RF (2013) CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers. Pharmacogenet Genomics 23:232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liakoni E, Edwards KC, St Helen G, Nardone N, Dempsey DA, Tyndale RF, Benowitz NL (2019) Effects of nicotine metabolic rate on withdrawal symptoms and response to cigarette smoking after abstinence. Clin Pharmacol Ther 105:641–651

    Article  CAS  PubMed  Google Scholar 

  31. Wang K, Chen X, Ward SC, Liu Y, Ouedraogo Y, Xu C, Cederbaum AI (2005) Lu Y (2019) CYP2A6 is associated with obesity: studies in human samples and a high fat diet mouse model. Int J Obes 43:475–486

    Article  Google Scholar 

  32. Alsharari SD, Siu ECK, Tyndale RF, Damaj MI (2013) Pharmacokinetic and pharmacodynamics studies of nicotine after oral administration in mice: effects of methoxsalen, a CYP2A5/6 inhibitor. Nicotine Tob Res 16:18–25

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bagdas D, Muldoon PP, Zhu AZ, Tyndale RF, Damaj MI (2014) Effects of methoxsalen, a CYP2A5/6 inhibitor, on nicotine dependence behaviors in mice. Neuropharmacology 85:67–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK et al (2022) Neurobiological mechanisms of nicotine reward and aversion. Pharmacol Rev 74:271–310

    Article  CAS  PubMed  Google Scholar 

  35. Aubin HJ, Rollema H, Svensson TH, Winterer G (2012) Smoking, quitting, and psychiatric disease: a review. Neurosci Biobehav Rev 36:271–284

    Article  PubMed  Google Scholar 

  36. Liu G, Wang R, Chen H, Wu P, Fu Y, Li K, Liu M, Shi Z et al (2022) Non-nicotine constituents in cigarette smoke extract enhance nicotine addiction through monoamine oxidase A inhibition. Front Neurosci 16:1058254

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, Zhuo Y, Zhang Y et al (2020) Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 17:1156–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu Y, Li X, Zhang S, Chen H, Wang H, Han S, Tian Y, Liu T, et al. (2022) A self-administered questionnaire to measure Chinese smokers’ cigarette dependence. J Ethn Subst Abuse: 1–17

  39. Aida K, Negishi M (1991) Posttranscriptional regulation of coumarin 7-hydroxylase induction by xenobiotics in mouse liver: mRNA stabilization by pyrazole. Biochemistry 30:8041–8045

    Article  CAS  PubMed  Google Scholar 

  40. Lu Y, Cederbaum AI (2006) Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice: role of cytochrome P450 2E1 and 2A5. Hepatolog 44:263–274

    Article  CAS  Google Scholar 

  41. Hahnemann B, Salonpää P, Pasanen M, Mäenpää J, Honkakoski P, Juvonen R, Lang MA, Pelkonen O et al (1992) Effect of pyrazole, cobalt and phenobarbital on mouse liver cytochrome P-450 2a–4/5 (Cyp2a-4/5) expression. Biochem J 286(Pt 1):289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blank MD, Sams C, Weaver MF, Eissenberg T (2008) Nicotine delivery, cardiovascular profile, and subjective effects of an oral tobacco product for smokers. Nicotine Tob Res 10:417–421

    Article  CAS  PubMed  Google Scholar 

  43. Cox LS, Tiffany ST, Christen AG (2001) Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine Tob Res 3:7–16

    Article  CAS  PubMed  Google Scholar 

  44. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO (1991) The Fagerström Test for Nicotine Dependence: a revision of the Fagerström Tolerance Questionnaire. Br J Addict 86:1119–1127

    Article  CAS  PubMed  Google Scholar 

  45. Blank MD, Disharoon S, Eissenberg T (2009) Comparison of methods for measurement of smoking behavior: mouthpiece-based computerized devices versus direct observation. Nicotine Tob Res 11:896–903

    Article  PubMed  PubMed Central  Google Scholar 

  46. Perkins KA, Karelitz JL, Giedgowd GE, Conklin CA (2012) The reliability of puff topography and subjective responses during ad lib smoking of a single cigarette. Nicotine Tob Res 14:490–494

    Article  CAS  PubMed  Google Scholar 

  47. Damaj MI, Siu EC, Sellers EM, Tyndale RF, Martin BR (2007) Inhibition of nicotine metabolism by methoxysalen: pharmacokinetic and pharmacological studies in mice. J Pharmacol Exp Ther 320:250–257

    Article  CAS  PubMed  Google Scholar 

  48. Liu C, Tose AJ, Verharen JP, Zhu Y, Tang LW, de Jong JW, Du JX, Beier KT et al (2022) An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron 110:3018–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kota D, Martin BR, Robinson SE, Damaj MI (2007) Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther 322:399–407

    Article  CAS  PubMed  Google Scholar 

  50. Jackson KJ, Martin BR, Changeux J-P, Damaj MI (2008) Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 325:302–312

    Article  CAS  PubMed  Google Scholar 

  51. Han S, Liu C, Chen H, Fu Y, Zhang Y, Miao R, Ren P, Yu P et al (2022) Pharmacokinetics of freebase nicotine and nicotine salts following subcutaneous administration in male rats. Drug Test Anal 15(10):1099–1106

    Article  PubMed  Google Scholar 

  52. Fujieda M, Yamazaki H, Saito T, Kiyotani K, Gyamfi MA, Sakurai M, Dosaka-Akita H, Sawamura Y et al (2004) Evaluation of CYP2A6 genetic polymorphisms as determinants of smoking behavior and tobacco-related lung cancer risk in male Japanese smokers. Carcinogenesis 25:2451–2458

    Article  CAS  PubMed  Google Scholar 

  53. Sartor CE, Lessov-Schlaggar CN, Scherrer JF, Bucholz KK, Madden PA, Pergadia ML, Grant JD, Jacob T et al (2010) Initial response to cigarettes predicts rate of progression to regular smoking: findings from an offspring-of-twins design. Addict Behav 35:771–778

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fowler CD, Kenny PJ (2014) Nicotine aversion: neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology 76(Pt B):533–544

    Article  CAS  PubMed  Google Scholar 

  55. Jensen KP, DeVito EE, Herman AI, Valentine GW, Gelernter J, Sofuoglu M (2015) A CHRNA5 smoking risk variant decreases the aversive effects of nicotine in humans. Neuropsychopharmacology 40:2813–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li L, Jia K, Zhou X, McCallum SE, Hough LB, Ding X (2013) Impact of nicotine metabolism on nicotine’s pharmacological effects and behavioral responses: insights from a Cyp2a(4/5)bgs-null mouse. J Pharmacol Exp Ther 347:746–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei Y, Li L, Zhou X, Zhang QY, Dunbar A, Liu F, Kluetzman K, Yang W et al (2013) Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos 41:132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Provincial and Ministerial Major Project of China (Grant Nos. 110202001031(JY-14), 110202102014, and 552022AK0070).

Author information

Authors and Affiliations

Authors

Contributions

M.L., H.W., Y.F., X.L., H.C., H.H., and Q.H. conceived and designed the experiments. M.L. performed the main experiments and data analysis and wrote the original draft. H.W. and Y.F. performed the population experiments. Y.Z. performed the nicotine and cotinine level detection experiments. G.L. and R.W. participated in assisting the dopamine release level detection. M.L., P.W., and H.C. revised the manuscript. H.C. and H.H. performed funding acquisition and supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Huan Chen or Hongwei Hou.

Ethics declarations

Ethical Approval

Ethical approval of human study was from Zhengzhou University.

Ethics committee of Drug Clinical Trials (Approval Number: 2021–06-01). All the animal procedures were approved by the Laboratory Animal Management and Ethics Committee of China National Tobacco Quality Supervision and Test Center (Approval Number: CTQTC-SYXK-2021002).

Consent to Participate

Informed consent was obtained from all individual participants and authors involved in this study.

Consent for Publication

We confirm that consent to publish has been received from all participants involved in this study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1189 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, H., Fu, Y. et al. The Role of Nicotine Metabolic Rate on Nicotine Dependence and Rewarding: Nicotine Metabolism in Chinese Male Smokers and Male Mice. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04040-8

Keywords

Navigation