Skip to main content
Log in

The Inflammation/NF-κB and BDNF/TrkB/CREB Pathways in the Cerebellum Are Implicated in the Changes in Spatial Working Memory After Both Morphine Dependence and Withdrawal in Rat

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We aimed to explore the impact of the cerebellum on the decline in spatial working memory following morphine dependence and withdrawal. Two groups of male Wistar rats received intraperitoneal injections of either saline (1 ml/kg) or morphine (10 mg/kg) twice daily for 10 days, serving as the control and dependent groups. Additionally, a withdrawal group underwent a 30-day withdrawal period after the dependence phase. Spatial working memory was assessed using a Y maze test. ELISA and western blot were used to assess protein levels in the cerebellum. On day 1, morphine impaired spatial working memory, deteriorated further after 10 days of morphine use, and nearly returned to its initial level following a 30-day withdrawal period. On day 10, significant increases in TNF-α, IL-1β, and CXCL12 and a notable decrease in IL-10 levels were detected in the morphine-dependent group, which did not completely restore in the withdrawal group. The protein levels of CXCR4, TLR4, P2X7R, and NF-κB sharply increased in the morphine-dependent group. However, these levels almost returned to normal after withdrawal. In the morphine-dependent group, BDNF decreased, while TrkB and CREB1 increased noticeably. Nevertheless, after withdrawal, TrkB and CREB1 but not BDNF levels returned to normal. In the morphine-dependent group, both CACNA1 and KCNMA1 decreased significantly and after withdrawal, only KCNMA1 showed partial restoration, while CACNA1 did not. It can be concluded that inflammation/NF-κB and BDNF/TrkB/CREB pathways play key roles in neural adaptation within the cerebellum, contributing to the decline in spatial working memory after both morphine dependence and withdrawal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Miall RC (1998) The cerebellum, predictive control and motor coordination. Novartis Found Symp 218:272–284. https://doi.org/10.1002/9780470515563.ch15 

    Article  CAS  PubMed  Google Scholar 

  2. Llinás R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3:958–965. https://doi.org/10.1016/0959-4388(93)90168-x

    Article  PubMed  Google Scholar 

  3. Mark M, Pakusch J, Ernst TM, Timmann D (2022) Cerebellum and emotion memory. Adv Exp Med Biol 1378:53–73. https://doi.org/10.1007/978-3-030-99550-8_5

    Article  CAS  PubMed  Google Scholar 

  4. Miquel M, Toledo R, García LI, Coria-Avila GA, Manzo J (2009) Why should we keep the cerebellum in mind when thinking about addiction? Curr Drug Abuse Rev 2:26–40. https://doi.org/10.2174/1874473710902010026

    Article  CAS  PubMed  Google Scholar 

  5. Miquel M, Vazquez-Sanroman D, Carbo-Gas M, Gil-Miravet I, Sanchis-Segura C, Carulli D et al (2016) Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 60:1–11. https://doi.org/10.1016/j.neubiorev.2015.11.005

    Article  PubMed  Google Scholar 

  6. Watson TC, Obiang P, Torres-Herraez A, Watilliaux A, Coulon P, Rochefort C et al (2019) Anatomical and physiological foundations of cerebello-hippocampal interaction. ELife 8:e41896. https://doi.org/10.7554/eLife.41896

  7. Ramnani N (2012) Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum 11:366–383. https://doi.org/10.1007/s12311-011-0272-3

    Article  PubMed  Google Scholar 

  8. Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL et al (2023) Cognitive-affective functions of the cerebellum. J Neurosci 43:7554–7564. https://doi.org/10.1523/jneurosci.1451-23.2023

    Article  CAS  PubMed  Google Scholar 

  9. Moulton EA, Elman I, Becerra LR, Goldstein RZ, Borsook D (2014) The cerebellum and addiction: insights gained from neuroimaging research. Addict Biol 19:317–331. https://doi.org/10.1111/adb.12101

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. 2019 Cerebellar modulation of the reward circuitry and social behavior. Science 363. https://doi.org/10.1126/science.aav0581

  11. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. 2019 The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20 https://doi.org/10.3390/ijms20174302

  12. Spetea M, Asim MF, Wolber G, Schmidhammer H (2013) The µ opioid receptor and ligands acting at the µ opioid receptor, as therapeutics and potential therapeutics. Curr Pharm Des 19:7415–7434. https://doi.org/10.2174/13816128113199990362

    Article  CAS  PubMed  Google Scholar 

  13. Eidson LN, Murphy AZ (2013) Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine. J Neurosci 33:15952–15963. https://doi.org/10.1523/jneurosci.1609-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu R, Li JX (2020) Toll-like receptor 4 signaling and drug addiction. Front Pharmacol 11:603445. https://doi.org/10.3389/fphar.2020.603445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morcuende A, Navarrete F, Nieto E, Manzanares J, Femenía T. 2021 Inflammatory biomarkers in addictive disorders. Biomolecules 11. https://doi.org/10.3390/biom11121824

  16. Zeng Y, Luo H, Gao Z, Zhu X, Shen Y, Li Y et al (2021) Reduction of prefrontal purinergic signaling is necessary for the analgesic effect of morphine. IScience 24:102213. https://doi.org/10.1016/j.isci.2021.102213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liang Y, Chu H, Jiang Y, Yuan L (2016) Morphine enhances IL-1β release through toll-like receptor 4-mediated endocytic pathway in microglia. Purinergic Signal 12:637–645. https://doi.org/10.1007/s11302-016-9525-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang CS, Kavalali ET, Monteggia LM (2022) BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 185:62–76. https://doi.org/10.1016/j.cell.2021.12.003

    Article  CAS  PubMed  Google Scholar 

  19. Camuso S, La Rosa P, Fiorenza MT, Canterini S (2022) Pleiotropic effects of BDNF on the cerebellum and hippocampus: implications for neurodevelopmental disorders. Neurobiol Dis 163:105606. https://doi.org/10.1016/j.nbd.2021.105606

    Article  CAS  PubMed  Google Scholar 

  20. Kowiański P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J (2018) BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593. https://doi.org/10.1007/s10571-017-0510-4

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Wolf ME (2015) Multiple faces of BDNF in cocaine addiction. Behav Brain Res 279:240–254. https://doi.org/10.1016/j.bbr.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  22. Geoffroy H, Noble F (2017) BDNF during withdrawal. Vitam Horm 104:475–496. https://doi.org/10.1016/bs.vh.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  23. Koo JW, Mazei-Robison MS, Chaudhury D, Juarez B, LaPlant Q, Ferguson D et al (2012) BDNF is a negative modulator of morphine action. Science 338:124–128. https://doi.org/10.1126/science.1222265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258. https://doi.org/10.14670/hh-25.237

    Article  CAS  PubMed  Google Scholar 

  25. Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A (2004) From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays 26:1185–1194. https://doi.org/10.1002/bies.20118

    Article  CAS  PubMed  Google Scholar 

  26. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947. https://doi.org/10.1101/cshperspect.a003947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45. https://doi.org/10.1016/j.neuron.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  28. Contet C, Goulding SP, Kuljis DA, Barth AL (2016) BK Channels in the central nervous system. Int Rev Neurobiol 128:281–342. https://doi.org/10.1016/bs.irn.2016.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baldelli P, Magnelli V, Carbone E (1999) Selective up-regulation of P- and R-type Ca2+ channels in rat embryo motoneurons by BDNF. Eur J Neurosci 11:1127–1133. https://doi.org/10.1046/j.1460-9568.1999.00523.x

    Article  CAS  PubMed  Google Scholar 

  30. Baldelli P, Forni PE, Carbone E (2000) BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons. Eur J Neurosci 12:4017–4032. https://doi.org/10.1046/j.1460-9568.2000.00305.x

    Article  CAS  PubMed  Google Scholar 

  31. Holm NR, Christophersen P, Olesen SP, Gammeltoft S (1997) Activation of calcium-dependent potassium channels in mouse [correction of rat] brain neurons by neurotrophin-3 and nerve growth factor. Proc Natl Acad Sci USA 94:1002–1006. https://doi.org/10.1073/pnas.94.3.1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422. https://doi.org/10.1176/appi.ajp.162.8.1414

    Article  PubMed  Google Scholar 

  33. Robbins TW, Ersche KD, Everitt BJ (2008) Drug addiction and the memory systems of the brain. Ann N Y Acad Sci 1141:1–21. https://doi.org/10.1196/annals.1441.020

    Article  CAS  PubMed  Google Scholar 

  34. Heinsbroek JA, De Vries TJ, Peters J. 2021 Glutamatergic systems and memory mechanisms underlying opioid addiction. Cold Spring Harb Perspect Med 11. https://doi.org/10.1101/cshperspect.a039602

  35. Duda W, Węsierska M (2021) Spatial working memory in rats: Crucial role of the hippocampus in the allothetic place avoidance alternation task demanding stimuli segregation. Behav Brain Res 412:113414. https://doi.org/10.1016/j.bbr.2021.113414

    Article  PubMed  Google Scholar 

  36. Zhang W, Guo L, Liu D (2022) Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Struct Funct 227:1735–1755. https://doi.org/10.1007/s00429-022-02469-y

    Article  PubMed  Google Scholar 

  37. Ma X, Zheng C, Chen Y, Pereira F, Li Z (2023) Working memory and reward increase the accuracy of animal location encoding in the medial prefrontal cortex. Cereb Cortex 33:2245–2259. https://doi.org/10.1093/cercor/bhac205

    Article  PubMed  Google Scholar 

  38. Bostan AC, Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 19:338–350. https://doi.org/10.1038/s41583-018-0002-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fernandez L, Rogasch NC, Do M, Clark G, Major BP, Teo WP et al (2020) Cerebral cortical activity following non-invasive cerebellar stimulation-a systematic review of combined TMS and EEG studies. Cerebellum 19:309–335. https://doi.org/10.1007/s12311-019-01093-7

    Article  PubMed  Google Scholar 

  40. Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K (2021) Recent advances in the understanding of specific efferent pathways emerging from the cerebellum. Front Neuroanat 15:759948. https://doi.org/10.3389/fnana.2021.759948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241–254. https://doi.org/10.1016/j.tics.2013.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bali P, Kenny PJ (2019) Transcriptional mechanisms of drug addiction Dialogues Clin Neurosci 21:379–387. https://doi.org/10.31887/DCNS.2019.21.4/pkenny

    Article  PubMed  Google Scholar 

  43. Browne CJ, Godino A, Salery M, Nestler EJ (2020) Epigenetic mechanisms of opioid addiction. Biol Psychiatry 87:22–33. https://doi.org/10.1016/j.biopsych.2019.06.027

    Article  CAS  PubMed  Google Scholar 

  44. Ahmadi S, Khaledi S (2020) Anxiety in rats with bile duct ligation is associated with activation of JNK3 mitogen-activated protein kinase in the hippocampus. Metab Brain Dis 35:579–588. https://doi.org/10.1007/s11011-020-00542-1

    Article  CAS  PubMed  Google Scholar 

  45. Hashemi P, Ahmadi S (2023) Alpha-pinene moderates memory impairment induced by kainic acid via improving the BDNF/TrkB/CREB signaling pathway in rat hippocampus. Front Mol Neurosci 16:1202232. https://doi.org/10.3389/fnmol.2023.1202232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637. https://doi.org/10.1038/nrn3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roeska K, Doods H, Arndt K, Treede RD, Ceci A (2008) Anxiety-like behaviour in rats with mononeuropathy is reduced by the analgesic drugs morphine and gabapentin. Pain 139:349–357. https://doi.org/10.1016/j.pain.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Wang S (2019) Historical review: opiate addiction and opioid receptors. Cell Transplant 28:233–238. https://doi.org/10.1177/0963689718811060

    Article  PubMed  Google Scholar 

  49. Ali S, Tahir B, Jabeen S, Malik M (2017) Methadone treatment of opiate addiction: a systematic review of comparative studies. Innov Clin Neurosci 14:8–19

    PubMed  PubMed Central  Google Scholar 

  50. Kutlu MG, Gould TJ (2016) Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 23:515–533. https://doi.org/10.1101/lm.042192.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. https://doi.org/10.1146/annurev.neuro.29.051605.113009

    Article  CAS  PubMed  Google Scholar 

  52. Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154:384–396. https://doi.org/10.1038/bjp.2008.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fournier ML, Faugere A, Barba-Vila O, Le Moine C (2023) Male and female rats show opiate withdrawal-induced place aversion and extinction in a Y-maze paradigm. Behav Brain Res 437:114122. https://doi.org/10.1016/j.bbr.2022.114122

    Article  PubMed  Google Scholar 

  54. Frenois F, Le Moine C, Cador M (2005) The motivational component of withdrawal in opiate addiction: role of associative learning and aversive memory in opiate addiction from a behavioral, anatomical and functional perspective. Rev Neurosci 16:255–276. https://doi.org/10.1515/revneuro.2005.16.3.255

    Article  CAS  PubMed  Google Scholar 

  55. Sala M, Braida D, Leone MP, Calcaterra P, Frattola D, Gori E (1994) Chronic morphine affects working memory during treatment and withdrawal in rats: possible residual long-term impairment. Behav Pharmacol 5:570–580. https://doi.org/10.1097/00008877-199410000-00002

    Article  CAS  PubMed  Google Scholar 

  56. Wang JH, Rizak JD, Chen YM, Li L, Hu XT, Ma YY (2013) Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys. Neurosci Bull 29:37–46. https://doi.org/10.1007/s12264-013-1305-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zarrindast MR, Jafari MR, Ahmadi S, Djahanguiri B (2004) Influence of central administration ATP-dependent K+ channel on morphine state-dependent memory of passive avoidance. Eur J Pharmacol 487:143–148. https://doi.org/10.1016/j.ejphar.2004.01.035

    Article  CAS  PubMed  Google Scholar 

  58. Azizbeigi R, Ahmadi S, Babapour V, Rezayof A, Zarrindast MR (2011) Nicotine restores morphine-induced memory deficit through the D1 and D2 dopamine receptor mechanisms in the nucleus accumbens. J Psychopharmacol 25:1126–1133. https://doi.org/10.1177/0269881111405354

    Article  CAS  PubMed  Google Scholar 

  59. Ahmadi S, Zarrindast MR, Haeri-Rohani A, Rezayof A, Nouri M (2007) Nicotine improves morphine-induced impairment of memory: possible involvement of N-methyl-D-aspartate receptors in the nucleus accumbens. Dev Neurobiol 67:1118–1127. https://doi.org/10.1002/dneu.20456

    Article  CAS  PubMed  Google Scholar 

  60. Liu Q, Li X, Zhao Y, Cao K, Liu Y, Xiao R et al (2019) Dopamine D1 receptor agonist treatment alleviates morphine-exposure-induced learning and memory impairments. Brain Res 1711:120–129. https://doi.org/10.1016/j.brainres.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  61. Liu Q, Li Y, Liu Y, Zhao Y, Li X, Zhang Y et al (2018) A dopamine D1 receptor agonist improved learning and memory in morphine-treated rats. Neurol Res 40:1080–1087. https://doi.org/10.1080/01616412.2018.1519946

    Article  CAS  PubMed  Google Scholar 

  62. Eidson LN, Murphy AZ (2019) Inflammatory mediators of opioid tolerance: implications for dependency and addiction. Peptides 115:51–58. https://doi.org/10.1016/j.peptides.2019.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cao JL, He JH, Ding HL, Zeng YM (2005) Activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats. Pain 118:336–349. https://doi.org/10.1016/j.pain.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  64. Li T, Hou Y, Cao W, Yan CX, Chen T, Li SB (2010) Naloxone-precipitated withdrawal enhances ERK phosphorylation in prefrontal association cortex and accumbens nucleus of morphine-dependent mice. Neurosci Lett 468:348–352. https://doi.org/10.1016/j.neulet.2009.11.030

    Article  CAS  PubMed  Google Scholar 

  65. Lin CP, Kang KH, Tu HJ, Wu MY, Lin TH, Liou HC et al (2017) CXCL12/CXCR4 signaling contributes to the pathogenesis of opioid tolerance: a translational study. Anesth Analg 124:972–979. https://doi.org/10.1213/ane.0000000000001480

    Article  CAS  PubMed  Google Scholar 

  66. Wilson NM, Jung H, Ripsch MS, Miller RJ, White FA (2011) CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun 25:565–573. https://doi.org/10.1016/j.bbi.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  67. Bongiovanni AR, Zhao P, Inan S, Wiah S, Shekarabi A, Farkas DJ et al (2022) Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats. Drug Alcohol Depend 238:109556. https://doi.org/10.1016/j.drugalcdep.2022.109556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25(Suppl 1):S4-s12. https://doi.org/10.1016/j.bbi.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang X, Cui Y, Jing J, Cui Y, Xin W, Liu X (2011) Involvement of p38/NF-κB signaling pathway in the nucleus accumbens in the rewarding effects of morphine in rats. Behav Brain Res 218:184–189. https://doi.org/10.1016/j.bbr.2010.11.049

    Article  CAS  PubMed  Google Scholar 

  71. Capasso A (2001) Involvement of nuclear factor-kB in the expression of opiate withdrawal. Prog Neuropsychopharmacol Biol Psychiatry 25:1259–1268. https://doi.org/10.1016/s0278-5846(01)00178-6

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Li H, Li Y, Sun X, Zhu M, Hanley G et al (2011) Essential role of toll-like receptor 2 in morphine-induced microglia activation in mice. Neurosci Lett 489:43–47. https://doi.org/10.1016/j.neulet.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  73. Tozaki-Saitoh H, Takeda H, Inoue K. 2022 The role of microglial purinergic receptors in pain signaling. Molecules 27. https://doi.org/10.3390/molecules27061919

  74. Trang T, Al-Hasani R, Salvemini D, Salter MW, Gutstein H, Cahill CM (2015) Pain and poppies: the good, the bad, and the ugly of opioid analgesics. J Neurosci 35:13879–13888. https://doi.org/10.1523/jneurosci.2711-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferrari LF, Levine JD (2015) Plasma membrane mechanisms in a preclinical rat model of chronic pain. J Pain 16:60–66. https://doi.org/10.1016/j.jpain.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  76. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. https://doi.org/10.1152/physrev.00043.2006

    Article  CAS  PubMed  Google Scholar 

  77. Ren WJ, Illes P (2022) Involvement of P2X7 receptors in chronic pain disorders. Purinergic Signal 18:83–92. https://doi.org/10.1007/s11302-021-09796-5

    Article  CAS  PubMed  Google Scholar 

  78. Xiao Z, Li YY, Sun MJ (2015) Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance. Pharmacol Biochem Behav 135:145–153. https://doi.org/10.1016/j.pbb.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  79. Kida S, Serita T (2014) Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull 105:17–24. https://doi.org/10.1016/j.brainresbull.2014.04.011

    Article  CAS  PubMed  Google Scholar 

  80. Brightwell JJ, Smith CA, Neve RL, Colombo PJ (2008) Transfection of mutant CREB in the striatum, but not the hippocampus, impairs long-term memory for response learning. Neurobiol Learn Mem 89:27–35. https://doi.org/10.1016/j.nlm.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  81. Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK (2020) The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 257:118020. https://doi.org/10.1016/j.lfs.2020.118020

    Article  CAS  PubMed  Google Scholar 

  82. Tully T, Bourtchouladze R, Scott R, Tallman J (2003) Targeting the CREB pathway for memory enhancers. Nat Rev Drug Discov 2:267–277. https://doi.org/10.1038/nrd1061

    Article  CAS  PubMed  Google Scholar 

  83. Han MH, Bolaños CA, Green TA, Olson VG, Neve RL, Liu RJ et al (2006) Role of cAMP response element-binding protein in the rat locus ceruleus: regulation of neuronal activity and opiate withdrawal behaviors. J Neurosci 26:4624–4629. https://doi.org/10.1523/jneurosci.4701-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hayashi Y, Morinaga S, Zhang J, Satoh Y, Meredith AL, Nakata T et al (2016) BK channels in microglia are required for morphine-induced hyperalgesia. Nat Commun 7:11697. https://doi.org/10.1038/ncomms11697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rupnik M, Baker D, Selwood DL (2021) Oligodendrocytes BK channels and the preservation of myelin. F1000Res 10:781. https://doi.org/10.12688/f1000research.53422.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zong P, Yue L (2023) Regulation of presynaptic calcium channels. Adv Neurobiol 33:171–202. https://doi.org/10.1007/978-3-031-34229-5_7

    Article  PubMed  Google Scholar 

  87. Garrido JJ. 2023 Contribution of axon initial segment structure and channels to brain pathology. Cells 12. https://doi.org/10.3390/cells12081210

Download references

Funding

This study was funded by the Vice Chancellorship of Research and Innovation at the University of Kurdistan (Grant No. 1398).

Author information

Authors and Affiliations

Authors

Contributions

SA: conceptualization and design of the work, writing—original draft preparation, writing—reviewing and editing, supervision, project administration, and funding acquisition. MM, MK, and SV: acquisition, analysis, interpretation of data, and writing—original draft preparation. All authors approved the final version for publication.

Corresponding author

Correspondence to Shamseddin Ahmadi.

Ethics declarations

Ethics Approval

All procedures were done according to the Guide for the Care and Use of Laboratory Animals (2011) prepared by the National Academy of Sciences’ Institute for Laboratory Animal Research. The Research Ethics Committee (REC) at the University of Kurdistan approved the study protocol (IR.UOK.REC.1399.013).

Declaration of Generative AI and AI-Assisted Technologies in the Writing Process

During the preparation of this work, the authors used Open AI to check grammatical errors in some sentences. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maryam Koraei and Samira Vasef contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Majidi, M., Koraei, M. et al. The Inflammation/NF-κB and BDNF/TrkB/CREB Pathways in the Cerebellum Are Implicated in the Changes in Spatial Working Memory After Both Morphine Dependence and Withdrawal in Rat. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03993-0

Keywords

Navigation