Skip to main content
Log in

Induction of Phosphorylated Tau Accumulation and Memory Impairment by Bisphenol A and the Protective Effects of Carnosic Acid in In Vitro and In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is a component of polycarbonate plastics that has been implicated in memory impairment. The present study investigated the effect of carnosic acid (CA) on memory deficit induced by BPA and the role of Akt in this mechanism. First, SH-SY5Y cells were treated with 20 nM BPA and 1 μM CA for 12 h. The results showed that treatment of CA with BPA improved the alternation of IRS-1/Akt/GSK-3β as well as the induction of ApoE and Ser396p-tau. Moreover, treatment of CA with BPA restored the signaling involved in long-term potentiation (LTP) effect, leading to induction of synaptic-related proteins, such as PSD-95, synapsin1a, and pro-BDNF. Wortmannin treatment alleviated the reversal by CA. Then, C57BL/6 J male mice were orally administered with CA to test the memory function in BPA treatment. The results showed that CA and RE can improve BPA-induced impairment of motor, recognition, and spatial memory by using open-field test (OFT), novel objective recognition test (NOR), and Y-maze test, respectively. Moreover, CA and RE improved the phosphorylation of tau and the reduction of PSD-95, synapsin1a, and pro-BDNF proteins induced by BPA. Therefore, the results indicated that CA decreased the phosphorylated tau and memory impairment induced by BPA through Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data is available on request from the authors.

Abbreviations

AD:

Alzheimer’s disease

Akt:

Protein kinase B

ApoE:

Apolipoprotein E

Aβ:

Amyloid beta

BDNF:

Brain-derived neurotrophic factor

BPA:

Bisphenol A

CA:

Carnosic acid

CREB:

CAMP response element-binding protein

DMEM:

Dulbecco’s Modified Eagle Medium

DMSO:

Dimethyl sulfoxide

ERK:

Extracellular signal-regulated kinase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GSK:

Glycogen synthase kinase

HRP:

Horseradish peroxidase

IB:

Immunoblotting

IP assay:

Immunoprecipitation assay

IRS-1:

Insulin response sequence-1

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide

NOR:

Novel object recognition test

OFT:

Open-field test

PSD-95:

Post-synaptic density protein 95

RA:

Retinoic acid

References

  1. Wu D, Wu F, Lin R, Meng Y, Wei W, Sun Q, Jia L (2020) Impairment of learning and memory induced by perinatal exposure to BPA is associated with ERalpha-mediated alterations of synaptic plasticity and PKC/ERK/CREB signaling pathway in offspring rats. Brain Res Bull 161:43–54. https://doi.org/10.1016/j.brainresbull.2020.04.023

    Article  PubMed  CAS  Google Scholar 

  2. Hoekstra EJ, Simoneau C (2013) Release of bisphenol A from polycarbonate: a review. Crit Rev Food Sci Nutr 53(4):386–402. https://doi.org/10.1080/10408398.2010.536919

    Article  PubMed  CAS  Google Scholar 

  3. Nesan D, Sewell LC, Kurrasch DM (2018) Opening the black box of endocrine disruption of brain development: lessons from the characterization of Bisphenol A. Horm Behav 101:50–58. https://doi.org/10.1016/j.yhbeh.2017.12.001

    Article  PubMed  CAS  Google Scholar 

  4. EFSA Panel on Food Contact Materials E, Processing A, Lambre C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R et al (2023) Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 21(4):e06857. https://doi.org/10.2903/j.efsa.2023.6857

    Article  CAS  Google Scholar 

  5. Akash MSH, Sabir S, Rehman K (2020) Bisphenol A-induced metabolic disorders: from exposure to mechanism of action. Environ Toxicol Pharmacol 77:103373. https://doi.org/10.1016/j.etap.2020.103373

    Article  PubMed  CAS  Google Scholar 

  6. Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F (2020) Potential mechanisms of bisphenol A (BPA) contributing to human disease. Int J Mol Sci 21(16):5761. https://doi.org/10.3390/ijms21165761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang T, Xie C, Yu P, Fang F, Zhu J, Cheng J, Gu A, Wang J et al (2017) Involvement of insulin signaling disturbances in bisphenol A-induced Alzheimer’s disease-like neurotoxicity. Sci Rep 7(1):7497. https://doi.org/10.1038/s41598-017-07544-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Li J, Wang Y, Fang F, Chen D, Gao Y, Liu J, Gao R, Wang J et al (2016) Bisphenol A disrupts glucose transport and neurophysiological role of IR/IRS/AKT/GSK3beta axis in the brain of male mice. Environ Toxicol Pharmacol 43:7–12. https://doi.org/10.1016/j.etap.2015.11.025

    Article  PubMed  CAS  Google Scholar 

  9. Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB (2016) Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol Metab 5(8):589–601. https://doi.org/10.1016/j.molmet.2016.06.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, Eskenazi B (2013) Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res 126:43–50. https://doi.org/10.1016/j.envres.2013.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yin Z, Hua L, Chen L, Hu D, Li J, An Z, Tian T, Ning H et al (2020) Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol In Vitro 67:104911. https://doi.org/10.1016/j.tiv.2020.104911

    Article  PubMed  CAS  Google Scholar 

  12. Hong SB, Hong YC, Kim JW, Park EJ, Shin MS, Kim BN, Yoo HJ, Cho IH et al (2013) Bisphenol A in relation to behavior and learning of school-age children. J Child Psychol Psychiatry 54(8):890–899. https://doi.org/10.1111/jcpp.12050

    Article  PubMed  Google Scholar 

  13. Chen Z, Li T, Zhang L, Wang H, Hu F (2018) Bisphenol A exposure remodels cognition of male rats attributable to excitatory alterations in the hippocampus and visual cortex. Toxicology 410:132–141. https://doi.org/10.1016/j.tox.2018.10.002

    Article  PubMed  CAS  Google Scholar 

  14. Zhou Y, Wang Z, Xia M, Zhuang S, Gong X, Pan J, Li C, Fan R et al (2017) Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: implications for children exposed to environmental levels of BPA. Environ Pollut 229:40–48. https://doi.org/10.1016/j.envpol.2017.05.043

    Article  PubMed  CAS  Google Scholar 

  15. Xu X, Liu X, Zhang Q, Zhang G, Lu Y, Ruan Q, Dong F, Yang Y (2013) Sex-specific effects of bisphenol-A on memory and synaptic structural modification in hippocampus of adult mice. Horm Behav 63(5):766–775. https://doi.org/10.1016/j.yhbeh.2013.03.004

    Article  PubMed  CAS  Google Scholar 

  16. Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW (2021) Carnosic acid alleviates levodopa-induced dyskinesia and cell death in 6-hydroxydopamine-lesioned rats and in SH-SY5Y cells. Front Pharmacol 12:703894. https://doi.org/10.3389/fphar.2021.703894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Azad N, Rasoolijazi H, Joghataie MT, Soleimani S (2011) Neuroprotective effects of carnosic acid in an experimental model of Alzheimer’s disease in rats. Cell J 13(1):39–44

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Teppola H, Sarkanen JR, Jalonen TO, Linne ML (2016) Morphological differentiation towards neuronal phenotype of SH-SY5Y neuroblastoma cells by estradiol, retinoic acid and cholesterol. Neurochem Res 41(4):731–747. https://doi.org/10.1007/s11064-015-1743-6

    Article  PubMed  CAS  Google Scholar 

  19. Chen YF, Lu YH, Tsai HY (2022) Crude extract of Desmodium gangeticum process anticancer activity via arresting cell cycle in G1 and modulating cell cycle-related protein expression in A549 human lung carcinoma cells. Biomedicine (Taipei) 12(2):31–39. https://doi.org/10.37796/2211-8039.1362

    Article  PubMed  Google Scholar 

  20. Lin CY, Tsai CW (2019) PINK1/parkin-mediated mitophagy pathway is related to neuroprotection by carnosic acid in SH-SY5Y cells. Food Chem Toxicol 125:430–437. https://doi.org/10.1016/j.fct.2019.01.027

  21. Lin CY, Tsai CW (2017) Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1. Mol Neurobiol 54(4):2813–2822. https://doi.org/10.1007/s12035-016-9873-7

    Article  PubMed  CAS  Google Scholar 

  22. Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Jove-J Vis Exp 96:e52434. https://doi.org/10.3791/52434

    Article  Google Scholar 

  23. Zhang R, Xue G, Wang S, Zhang L, Shi C, Xie X (2012) Novel object recognition as a facile behavior test for evaluating drug effects in AbetaPP/PS1 Alzheimer’s disease mouse model. J Alzheimers Dis 31(4):801–812. https://doi.org/10.3233/JAD-2012-120151

    Article  PubMed  CAS  Google Scholar 

  24. Belo RF, Martins MLF, Shvachiy L, Costa-Coelho T, de Almeida-Borlido C, Fonseca-Gomes J, Neves V, Vicente Miranda H et al (2020) The neuroprotective action of amidated-kyotorphin on amyloid beta peptide-induced Alzheimer’s disease pathophysiology. Front Pharmacol 11:985. https://doi.org/10.3389/fphar.2020.00985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang H, Xu J, Lazarovici P, Quirion R, Zheng W (2018) cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci 11:255. https://doi.org/10.3389/fnmol.2018.00255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang C, Li Z, Han H, Luo G, Zhou B, Wang S, Wang J (2016) Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus. Toxicology 341–343:56–64. https://doi.org/10.1016/j.tox.2016.01.010

    Article  PubMed  CAS  Google Scholar 

  27. Chen L, Lau AG, Sarti F (2014) Synaptic retinoic acid signaling and homeostatic synaptic plasticity. Neuropharmacology 78:3–12. https://doi.org/10.1016/j.neuropharm.2012.12.004

    Article  PubMed  CAS  Google Scholar 

  28. Guo J, Walss-Bass C, Luduena RF (2010) The beta isotypes of tubulin in neuronal differentiation. Cytoskeleton (Hoboken) 67(7):431–441. https://doi.org/10.1002/cm.20455

    Article  PubMed  CAS  Google Scholar 

  29. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463(1–3):3–33. https://doi.org/10.1016/s0014-2999(03)01272-x

    Article  PubMed  CAS  Google Scholar 

  30. Cohen SJ, Stackman RW Jr (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117. https://doi.org/10.1016/j.bbr.2014.08.002

    Article  PubMed  Google Scholar 

  31. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  PubMed  CAS  Google Scholar 

  32. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2010) Scientific Opinion on Bisphenol A: evaluation of a study investigating its neurodevelopmental toxicity, review of recent scientific literature on its toxicity and advice on the Danish risk assessment of Bisphenol A. EFSA J 8:1829. https://doi.org/10.2903/j.efsa.2010.1829

    Article  CAS  Google Scholar 

  33. Chen Z, Zuo X, He D, Ding S, Xu F, Yang H, Jin X, Fan Y et al (2017) Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes. Sci Rep 7:40337. https://doi.org/10.1038/srep40337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) (2015) Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 13:3978. https://doi.org/10.2903/j.efsa.2015.3978

    Article  CAS  Google Scholar 

  35. Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R et al (2020) Prenatal bisphenol A exposure contributes to Tau pathology: potential roles of CDK5/GSK3beta/PP2A axis in BPA-induced neurotoxicity. Toxicology 438:152442. https://doi.org/10.1016/j.tox.2020.152442

    Article  PubMed  CAS  Google Scholar 

  36. Zhang H, Kuang H, Luo Y, Liu S, Meng L, Pang Q, Fan R (2019) Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. Sci Total Environ 697:134036. https://doi.org/10.1016/j.scitotenv.2019.134036

    Article  PubMed  CAS  Google Scholar 

  37. Galizzi G, Di Carlo M (2022) Insulin and its key role for mitochondrial function/dysfunction and quality control: a shared link between dysmetabolism and neurodegeneration. Biology (Basel) 11(6):943. https://doi.org/10.3390/biology11060943

    Article  PubMed  CAS  Google Scholar 

  38. Fang F, Gao Y, Wang T, Chen D, Liu J, Qian W, Cheng J, Gao R et al (2016) Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: role of insulin signaling in the brain. Toxicol Lett 245:59–67. https://doi.org/10.1016/j.toxlet.2016.01.007

    Article  PubMed  CAS  Google Scholar 

  39. Metaxas A, Kempf SJ (2016) Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res 11(10):1579–1581. https://doi.org/10.4103/1673-5374.193234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rhea EM, Raber J, Banks WA (2020) ApoE and cerebral insulin: trafficking, receptors, and resistance. Neurobiol Dis 137:104755. https://doi.org/10.1016/j.nbd.2020.104755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wang Z, Alderman MH, Asgari C, Taylor HS (2020) Fetal bisphenol-A induced changes in murine behavior and brain gene expression persisted in adult-aged offspring. Endocrinology 161(12):bqaa164. https://doi.org/10.1210/endocr/bqaa164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Luo M, Li L, Ding M, Niu Y, Xu X, Shi X, Shan N, Qiu Z et al (2023) Long-term potentiation and depression regulatory microRNAs were highlighted in bisphenol A induced learning and memory impairment by microRNA sequencing and bioinformatics analysis. PLoS One 18(1):e0279029. https://doi.org/10.1371/journal.pone.0279029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. El Morsy EM, Ahmed M (2020) Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol 39(8):1066–1078. https://doi.org/10.1177/0960327120909882

    Article  PubMed  CAS  Google Scholar 

  44. Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M (2013) The protective role of carnosic acid against beta-amyloid toxicity in rats. Sci World J 2013:917082. https://doi.org/10.1155/2013/917082

    Article  CAS  Google Scholar 

  45. Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117. https://doi.org/10.1146/annurev-neuro-090919-022842

    Article  PubMed  CAS  Google Scholar 

  46. Wang C, Niu R, Zhu Y, Han H, Luo G, Zhou B, Wang J (2014) Changes in memory and synaptic plasticity induced in male rats after maternal exposure to bisphenol A. Toxicology 322:51–60. https://doi.org/10.1016/j.tox.2014.05.001

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Technology (MOST 110–2320-B-039–050-MY3) and the China Medical University (CMU111-MF-77 and CMU112-MF-68).

Author information

Authors and Affiliations

Authors

Contributions

Shaoi Hsu and Ruhuei Fu contributed equally to this work. Data curation and validation were performed by Shaoi Hsu, Huichi Huang, Chunhuei Liao, Hsiyun Huang, Yachen Shih, Jingwei Chen, Hanting Wu, and Tzuyu Kuo. The first draft of the manuscript was written by Shaoi Hsu. Ruhuei Fu performed conceptualization, methodology, resources, and supervision. Chiawen Tsai conceived the project, funding acquisition, project administration, resources, supervision, and writing the final manuscript.

Corresponding author

Correspondence to Chiawen Tsai.

Ethics declarations

Ethics Approval and Consent to Participate

All animal procedures were evaluated and approved by the Institutional Animal Care and Use Committee of China Medical University (protocol no. CMUIACUC-2021–099-1).

Consent for Publication

All listed authors have approved the final manuscript before submission, including the names and order of authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• BPA induced the alternation of insulin signaling and synaptic plasticity in SH-SY5Y cells and mice.

• BPA exposure caused accumulation of p-tau and apo E.

• BPA exposure impairs recognition and memory ability in mice.

• CA and RE improved BPA-induced phosphorylated tau and memory impairment.

• CA and RE prevented BPA-induced adverse effects through Akt pathway.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, S., Huang, H., Liao, C. et al. Induction of Phosphorylated Tau Accumulation and Memory Impairment by Bisphenol A and the Protective Effects of Carnosic Acid in In Vitro and In Vivo. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03952-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03952-9

Keywords

Navigation