Skip to main content

Advertisement

Log in

Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Christensen D, Zubler J (2020) CE: from the CDC: understanding autism spectrum disorder. Am J Nurs 120(10):30–37

  2. Dizitzer Y, Meiri G, Flusser H, Michaelovski A, Dinstein I, Menashe I (2020) Comorbidity and health services’ usage in children with autism spectrum disorder: a nested case-control study. Epidemiol Psychiatr Sci 28(29):e95

  3. Maenner MJ, Warren Z, Williams A, Amoakohene E, Bakian AV, Bilder DA, Durkin MS et al (2023) Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 72(2):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520

  5. Maldonado-Ruiz R, Garza-Ocañas L, Camacho A (2019) Inflammatory domains modulate autism spectrum disorder susceptibility during maternal nutritional programming. Neurochem Int 126:109–117

    Article  CAS  PubMed  Google Scholar 

  6. Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M (2022) Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 19(13):1006612

  7. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, de Rubeis S, An JY, Peng M et al (2020) Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180(3):568–584.e23

  8. Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Al-Ayadhi LY, Attia SM (2017) Upregulation of IL-9 and JAK-STAT signaling pathway in children with autism. Prog Neuro-Psychopharmacology Biol Psychiatry 79(Pt B):472–480

  9. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25(1):40–45

  10. Sciara AN, Beasley B, Crawford JD, Anderson EP, Carrasco T, Zheng S, Ordway GA, Chandley MJ (2020) Neuroinflammatory gene expression alterations in anterior cingulate cortical white and gray matter of males with autism spectrum disorder. Autism Res 13(6):870–884

  11. Heuer LS, Croen LA, Jones KL, Yoshida CK, Hansen RL, Yolken R, Zerbo O et al (2019) An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: the early markers for autism study. Biol Psychiatry 86(4):255–264

  12. Doi M, Usui N, Shimada S (2022) Prenatal environment and neurodevelopmental disorders. Front Endocrinol 15(13):860110

  13. De BHA, Harding JE (2006) The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 46(1):4–14

  14. Buehler MR (2011) A proposed mechanism for autism: an aberrant neuroimmune response manifested as a psychiatric disorder. Med Hypotheses 76(6):863–870

  15. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7(10):a020545

  16. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, Yoon SY (2017) Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 22(11):1576–1584

  17. Maldonado-Ruiz R, Trujillo-Villarreal LA, Montalvo-Martínez L, Mercado-Gómez OF, Arriaga-Ávila V, Garza-Ocañas L, Ortiz-López R, Garza-Villarreal EA et al (2022) MCP-1 signaling disrupts social behavior by modulating brain volumetric changes and microglia morphology. Mol Neurobiol 59(2):932–949

  18. de la Garza AL, Garza-Cuellar MA, Silva-Hernandez IA, Cardenas-Perez RE, Reyes-Castro LA, Zambrano E, Gonzalez-Hernandez B, Garza-Ocañas L et al (2019) Maternal flavonoids intake reverts depression-like behaviour in rat female offspring. Nutrients 11(3):572

  19. Trujillo-Villarreal LA, Romero-Díaz VJ, Marino-Martínez IA, Fuentes-Mera L, Ponce-Camacho MA, Devenyi GA, Mallar Chakravarty M, Camacho-Morales A et al (2021) Maternal cafeteria diet exposure primes depression-like behavior in the offspring evoking lower brain volume related to changes in synaptic terminals and gliosis. Transl Psychiatry 11(1):53

  20. Camacho A, Montalvo-Martinez L, Cardenas-Perez RE, Fuentes-Mera L, Garza-Ocañas L (2017) Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring. Behav Brain Res 14(330):46–55

  21. Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Cárdenas-Tueme M, Bernal-Vega S, Garza-Ocañas L, Ortiz-López R, Reséndez-Pérez D et al (2022a) Maternal high-dense diet programs interferon type I signaling and microglia complexity in the nucleus accumbens shell of rats showing food addiction-like behavior. Neuroreport 33(12):495–503

  22. Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal LA, Cardenas-Tueme M, Viveros-Contreras R, Ortiz-López R, Camacho-Morales A (2022b) Transgenerational susceptibility to food addiction-like behavior in rats associates to a decrease of the anti-inflammatory IL-10 in plasma. Neurochem Res 47(10):3093–3103

  23. Camacho-Morales A, Caballero-Benitez A, Vázquez-Cruz E, Maldonado-Ruiz R, Cárdenas-Tueme M, Rojas-Martinez A, Caballero-Hernández D (2022) Maternal programming by high-energy diets primes ghrelin sensitivity in the offspring of rats exposed to chronic immobilization stress. Nutr Res 107:37–47

  24. Singh S, Anshita D, Ravichandiran V (2021) MCP-1: function, regulation, and involvement in disease. Int Immunopharmacol 101(Pt B):107598

  25. Laing KJ, Secombes CJ (2004) Trout CC chemokines: comparison of their sequences and expression patterns. Mol Immunol. 41(8):793–808

  26. Hughes CE, Nibbs RJB (2018) A guide to chemokines and their receptors. FEBS J 285(16):2944–2971

  27. Barna BP, Pettay J, Barnett GH, Zhou P, Iwasaki K, Estes ML (1994) Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J Neuroimmunol 50(1):101–107

  28. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 87(13):5134–5138

  29. Standiford TJ, Kunkel SL, Phan SH, Rollins BJ, Strieter RM (1991) Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem 266(15):9912–9918

  30. Apel AK, Cheng RKY, Tautermann CS, Brauchle M, Huang CY, Pautsch A, Hennig M, Nar H et al (2019) Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists. Structure 27(3):427–438.e5

  31. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR (1994) Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci U S A 91(7):2752–2756

  32. White GE, Iqbal AJ, Greaves DR (2013) CC chemokine receptors and chronic inflammation-therapeutic opportunities and pharmacological challenges. Pharmacol Rev 65(1):47–89

  33. Lokeshwar BL, Kallifatidis G, Hoy JJ (2020) Atypical chemokine receptors in tumor cell growth and metastasis. Adv Cancer Res 145:1–27

  34. Xu M, Wang Y, Xia R, Wei Y, Wei X (2021) Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting. Cell Prolif 54(10):e13115

  35. Banisadr G, Gosselin RD, Mechighel P, Kitabgi P, Rostène W, Parsadaniantz SM (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489(3):275–292

  36. Edman LC, Mira H, Arenas E (2008) The β-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons. Exp Cell Res 314(10):2123–2130

  37. Gaupp S, Arezzo J, Dutta DJ, John GR, Raine CS (2011) On the occurrence of hypomyelination in a transgenic mouse model: a consequence of the myelin basic protein promoter? J Neuropathol Exp Neurol 70(12):1138–1150

  38. Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S et al (2018) Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev Cell 46(4):504–517.e7

  39. Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26(12):3182–3191

  40. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81. https://doi.org/10.1002/ana.20315

  41. Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM (2012) Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun 26(1):170–176. https://doi.org/10.1016/j.bbi.2011.09.003

  42. Alshammery S, Patel S, Jones HF, Han VX, Gloss BS, Gold WA, Dale RC (2022) Common targetable inflammatory pathways in brain transcriptome of autism spectrum disorders and Tourette syndrome. Front Neurosci 15(16):999346. https://doi.org/10.3389/fnins.2022.999346

  43. Napolioni V, Ober-Reynolds B, Szelinger S, Corneveaux JJ, Pawlowski T, Ober-Reynolds S, Kirwan J, Persico AM, Melmed RD, Craig DW, Smith CJ, Huentelman MJ (2013) Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J Neuroinflammation 14(10):38. https://doi.org/10.1186/1742-2094-10-38

  44. Peng G, Peng X, Tong T, Zhang X, Xu M, Peng X (2021) Correlation analysis of expression of CC and CXC chemokines in children with autism spectrum disorder. Medicine (Baltimore) 100(24):e26391. https://doi.org/10.1097/MD.0000000000026391

  45. Runge K, Fiebich BL, Kuzior H, Rausch J, Maier SJ, Dersch R, Nickel K, Domschke K, van Elst LT, Endres D (2023) Altered cytokine levels in the cerebrospinal fluid of adult patients with autism spectrum disorder. J Psychiatr Res 158:134–142. https://doi.org/10.1016/j.jpsychires

  46. Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL et al (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29(13):4096–4108

  47. Jung H, Toth PT, White FA, Miller RJ (2008) Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J Neurochem 104(1):254–263

  48. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2(4):241–248

  49. Stamatovic SM, Shakui P, Keep RF, Moore BB, Kunkel SL, Van RN, Andjelkovic AV (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25(5):593–606

  50. de Los Angeles Robinson-Agramonte M, García EN, Guerra JF, Hurtado YV, Antonucci N, Semprún-Hernández N, Schultz S, Siniscalco D (2022) Immune dysregulation in autism spectrum disorder: what do we know about it? Int J Mol Sci 23(6):3033

  51. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569–573

  52. Camacho-Morales A (2022) Glycolytic metabolism supports microglia training during age-related neurodegeneration. Pharmacol Rep 4(5):818–831

  53. Kim JE, Park H, Lee JE, Kang TC (2020) CDDO-Me inhibits microglial activation and monocyte infiltration by abrogating NFκB- and p38 MAPK-mediated signaling pathways following status epilepticus. Cells 9(5):1123. https://doi.org/10.3390/cells9051123

  54. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J. Neuroimmunol 207(1-2):111–116

  55. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol. Psychiatry 68(4):368–376

  56. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 80 333(6048):1456–1458

  57. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143

  58. Cai D, Khor S (2019) “Hypothalamic microinflammation” paradigm in aging and metabolic diseases. Cell Metab 30(1):19–35

  59. Arenella M, Cadby G, De WW, Jones RM, Whitehouse AJO, Moses EK, Fornito A et al (2022) Potential role for immune-related genes in autism spectrum disorders: evidence from genome-wide association meta-analysis of autistic traits. Autism 26(2):361–372

  60. Golovina E, Fadason T, Lints TJ, Walker C, Vickers MH, O’Sullivan JM (2021) Understanding the impact of SNPs associated with autism spectrum disorder on biological pathways in the human fetal and adult cortex. Sci Rep 11(1):15867

  61. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, Allman JM (2012) Microglia in the cerebral cortex in autism. J Autism Dev Disord 42(12):2569–2584

  62. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DML et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. Neurosci 29(2):359–370

  63. Delint-Ramirez I, Maldonado Ruiz R, Torre-Villalvazo I, Fuentes-Mera L, Garza Ocañas L, Tovar A, Camacho A (2015) Genetic obesity alters recruitment of TANK-binding kinase 1 and AKT into hypothalamic lipid rafts domains. Neurochem Int 80:23–32

  64. Diaz B, Fuentes-Mera L, Tovar A, Montiel T, Massieu L, Martínez-Rodríguez HG, Camacho A (2015) Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells. Brain Res 1627:80–89

  65. Leulier F, Parquet C, Pili-Floury S, Ryu J. H, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4(5):491–496

  66. Nie X, Kitaoka S, Tanaka K, Segi-Nishida E, Imoto Y, Ogawa A, Nakano F et al (2018) The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron 99(3):464–479.e7

  67. Yvanka de Soysa T, Therrien M, Walker AC, Stevens B (2022) Redefining microglia states: lessons and limits of human and mouse models to study microglia states in neurodegenerative diseases. Semin Immunol 60:101651

  68. Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM, Daza R, Young E et al (2019) Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet 104(5):936–947

  69. Cárdenas-Tueme M, Montalvo-Martínez L, Maldonado-Ruiz R, Camacho-Morales A, Reséndez-Pérez D (2020) Neurodegenerative susceptibility during maternal nutritional programing: are central and peripheral innate immune training relevant? Front Neurosci 4(14):13

  70. Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15(8):447–458

  71. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (6005):330, 841–335

  72. Yaqubi M, Groh A, Dorion M-F, Afanasiev E, Luo J, Hashemi H, Sinha S et al (2023) Analysis of the microglia transcriptome across the human lifespan using single cell RNA sequencing. J Neuroinflammation 20(1):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE (2014) Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun 5:5748

  74. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH (2011) Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351):380–384

  75. Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether J, Hansen R, Kharrazi M, Ashwood P et al (2011) Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism 2(2):13

  76. Jones KL, Croen LA, Yoshida CK, Heuer L, Hansen R, Zerbo O, Delorenze GN et al (2017) Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry 22(2):273–279

  77. Gervasi MT, Romero R, Bracalente G, Erez O, Dong Z, Hassan SS, Yeo L, Yoon BH et al (2012) Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med 40(4):329–343

  78. Atladóttir HÓ, Thorsen P, Østergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40(12):1423–1430

  79. Chess S (1971) Autism in children with congenital rubella. J Autism Child Schizophr 1(1):33–47

  80. Croen LA, Qian Y, Ashwood P, Zerbo O, Schendel D, Pinto-Martin J, Daniele Fallin M et al (2019) Infection and fever in pregnancy and autism spectrum disorders: findings from the study to explore early development. Autism Res 12(10):1551–1561

  81. Courchesne E, Pramparo T, Gazestani V, Lombardo M, Pierce K, Lewis N (2018) The ASD living biology: from cell proliferation to clinical phenotype. Mol Psychiatry. 24(1):88–107

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM, Soares N, Yeon Kim J et al (2017) Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549(7673):482–487

  83. Careaga M, Murai T, Bauman MD (2017) Maternal immune activation and autism spectrum disorder: from rodents to nonhuman and human primates. Biol Psychiatry 81(5):391–401

  84. Chen HJ, Antonson AM, Rajasekera TA, Patterson JM, Bailey MT, Gur TL (2020) Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Transl Psychiatry 10(1):191

  85. Kwon J, Suessmilch M, McColl A, Cavanagh J, Morris BJ (2021) Distinct trans-placental effects of maternal immune activation by TLR3 and TLR7 agonists: implications for schizophrenia risk. Sci Rep 11(1):23841

  86. Ozaki K, Kato D, Ikegami A, Hashimoto A, Sugio S, Guo Z, Shibushita M et al (2020) Maternal immune activation induces sustained changes in fetal microglia motility. Sci Rep 10(1):21378

  87. Bocarsly ME, Fasolino M, Kane GA, Lamarca EA, Kirschen GW, Karatsoreos IN, McEwen BS, Gould E (2015) Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci U S A 112(51):15731–15736

  88. Cope EC, Lamarca EA, Monari PK, Olson LB, Martinez S, Zych AD, Katchur NJ, Gould E (2018) Microglia play an active role in obesity-associated cognitive decline. J Neurosci 38(41):8889–8904

  89. Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K (2010) Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int 57(3):235–247

  90. Lippert RN, Hess S, Klemm P, Burgeno LM, Jahans-Price T, Walton ME, Kloppenburg P, Brüning JC (2020) Maternal highfat diet during lactation reprograms the dopaminergic circuitry in mice. J Clin Invest 130(7):3761–3776

  91. Su L, Chen C, Lu L, Xiang AH, Dodds L, He K (2020) Association between gestational weight gain and autism spectrum disorder in offspring: a meta-analysis. Obesity 28(11):2224–2231

  92. Shen Y, Dong H, Lu X, Lian N, Xun G, Shi L, Xiao L, Zhao J, Ou J (2018) Associations among maternal pre-pregnancy body mass index, gestational weight gain and risk of autism in the Han Chinese population. BMC Psychiatry 18(1):11

  93. Chen S, Fan M, Lee B, Dalman C, Karlsson H, Gardner R (2023) Rates of maternal weight gain over the course of pregnancy and offspring risk of neurodevelopmental disorders. BMC Med 21(1):108

  94. Patti M, Croen L, Chen A, Fallin MD, Khoury J, Lyall K, Newschaffer C et al (2023) Prepregnancy BMI, gestational weight gain, and susceptibility to autism-related traits: the EARLI and HOME studies. Obesity (Silver Spring) 31(5):1415–1424

    Article  PubMed  Google Scholar 

  95. Andersen CH, Thomsen PH, Nohr EA, Lemcke S (2018) Maternal body mass index before pregnancy as a risk factor for ADHD and autism in children. Eur Child Adolesc Psychiatry 48(2):139–148

  96. Gardner RM, Lee BK, Magnusson C, Rai D, Frisell T, Karlsson H, Idring S, Dalman C (2015) Maternal body mass index during early pregnancy, gestational weight gain, and risk of autism spectrum disorders: results from a Swedish total population and discordant sibling study. Int J Epidemiol 44(3):870–883

  97. Li M, Fallin MD, Riley A, Landa R, Walker SO, Silverstein M, Caruso D et al (2016) The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics 137(2):e20152206

  98. Reynolds LC, Inder TE, Neil JJ, Pineda RG, Rogers CE (2014) Maternal obesity and increased risk for autism and developmental delay among very preterm infants. J Perinatol 34(9):688–692

  99. Dommel S, Blüher M (2021) Does C-C motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int J Mol Sci . 22(3):1500

  100. Nankam PAN, Cornely M, Klöting N, Blüher M (2022) Is subcutaneous adipose tissue expansion in people living with lipedema healthier and reflected by circulating parameters? Front Endocrinol (Lausanne). 13:1000094

  101. Zilkha N, Kuperman Y, Kimchi T (2017) High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience 345:142–154

  102. Veniaminova E, Cespuglio R, Cheung CW, Umriukhin A, Markova N, Shevtsova E, Lesch KP, Anthony DC, Strekalova T (2017) Autism-like behaviours and memory deficits result from a western diet in mice. Neural Plast 2017:9498247

  103. Bordeleau M, Lacabanne C, Fernández De Cossío L, Vernoux N, Savage JC, González-Ibáñez F, Tremblay MÈ (2020) Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J Neuroinflammation 17(1):264

  104. Thompson MD, Derse A, Ferey JL, Reid M, Xie Y, Christ M, Chatterjee D et al (2019) Transgenerational impact of maternal obesogenic diet on offspring bile acid homeostasis and nonalcoholic fatty liver disease. Am J Physiol - Endocrinol Metab 316(4):E674–E686

  105. Maldonado-Ruiz R, Cárdenas-Tueme M, Montalvo-Martínez L, Vidaltamayo R, Garza-Ocañas L, Reséndez-Perez D, Camacho A (2019) Priming of hypothalamic ghrelin signaling and microglia activation exacerbate feeding in rats’ offspring following maternal overnutrition. Nutrients 11(6):1241

  106. Xiong Y, Chen J, Li Y (2023) Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci. 17:1125428

    Article  PubMed  PubMed Central  Google Scholar 

  107. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I et al (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26(1):185–197.e3

  108. Hao S, Dey A, Yu X, Stranahan AM (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51:230–239

  109. Fernandes DJ, Spring S, Roy AR, Qiu LR, Yee Y, Nieman BJ, Lerch JP, Palmert MR (2021) (2021) Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Transl Psychiatry 111(11):1–9

    Google Scholar 

  110. Hatanaka Y, Wada K, Kabuta T (2016) Maternal high-fat diet leads to persistent synaptic instability in mouse offspring via oxidative stress during lactation. Neurochem Int 97:99–108

  111. McEwen BS (2017) Neurobiological and systemic effects of chronic stress. Chronic Stress (Thousand Oaks) 1:2470547017692328

  112. Bronson SL, Bale TL (2014) Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology 155(7):2635–2646

  113. Dahlgren J, Samuelsson AM, Jansson T, Holmäng A (2006) Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation. Pediatr Res 60(2):147–151

  114. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE (2004) Transfer of inflammatory cytokines across the placenta. Obstet Gynecol 103(3):546–550

  115. Graham AM, Rasmussen JM, Rudolph MD, Heim CM, Gilmore JH, Styner M, Potkin SG et al (2018) Maternal systemic interleukin-6 during pregnancy is associated with newborn amygdala phenotypes and subsequent behavior at 2 years of age. Biol. Psychiatry 83(2):109–119

  116. Rasmussen JM, Graham AM, Entringer S, Gilmore JH, Styner M, Fair DA, Wadhwa PD, Buss C (2019) Maternal interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. Neuroimage 185:825–835

  117. Rudolph MD, Graham AM, Feczko E, Miranda-Dominguez O, Rasmussen JM, Nardos R, Entringer S, Wadhwa PD, Buss C, Fair DA (2018) Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat Neurosci 21(5):765–772

  118. Spann MN, Monk C, Scheinost D, Peterson BS (2018) Maternal immune activation during the third trimester is associated with neonatal functional connectivity of the salience network and fetal to toddler behavior. J Neurosci 38(11):2877–2886

  119. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R et al (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6(3):315–325

  120. García-Juárez M, Camacho-Morales A (2022) Defining the role of anti- and pro-inflammatory outcomes of interleukin-6 in mental health. Neuroscience 1(492):32–46

  121. Ayres C, Silveira PP, Barbieri MA, Portella AK, Bettiol H, Agranonik M, Silva AA, Goldani MZ (2011) Exposure to maternal smoking during fetal life affects food preferences in adulthood independent of the effects of intrauterine growth restriction. J Dev Orig Health Dis 2(3):162–167

  122. Franke RM, Park M, Belluzzi JD, Leslie FM (2008) Prenatal nicotine exposure changes natural and drug-induced reinforcement in adolescent male rats. Eur J Neurosci 27(11):2952–2961

  123. Conti AA, Tolomeo S, Steele JD, Baldacchino AM (2020) Severity of negative mood and anxiety symptoms occurring during acute abstinence from tobacco: a systematic review and meta-analysis. Neurosci Biobehav Rev 115:48–63

  124. Kuschner WG, D’Alessandro A, Wong H, Blanc PD (1996) Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur Respir J 9(10):1989–1994

  125. Kastelein TE, Duffield R, Marino FE (2015) Acute immune-inflammatory responses to a single bout of aerobic exercise in smokers; the effect of smoking history and status. Front Immunol 623(6):634

  126. Al-Odat I, Chen H, Chan YL, Amgad S, Wong MG, Gill A, Pollock C, Saad S (2014) The impact of maternal cigarette smoke exposure in a rodent model on renal development in the offspring. PLoS One 9(7):e103443

  127. Yu M, Zheng X, Peake J, Joad JP, Pinkerton KE (2008) Perinatal environmental tobacco smoke exposure alters the immune response and airway innervation in infant primates. J Allergy Clin Immunol 122(3):640–7.e1

  128. Hertz-Picciotto I, Korrick SA, Ladd-Acosta C, Karagas MR, Lyall K, Schmidt RJ, Dunlop AL et al (2022) Maternal tobacco smoking and offspring autism spectrum disorder or traits in ECHO cohorts. Autism Res 15(3):551–569

  129. Cheslack-Postava K, Sourander A, Hinkka-Yli-Salomäki S, McKeague IW, Surcel HM, Brown AS (2021) A biomarkerbased study of prenatal smoking exposure and autism in a Finnish national birth cohort. Autism Res 14(11):2444–2453

  130. Haglund NGS, Källén KBM (2011) Risk factors for autism and Asperger syndrome: perinatal factors and migration. Autism 15(2):163–183

  131. Kalkbrenner AE, Meier SM, Madley-Dowd P, Ladd-Acosta C, Fallin MD, Parner E, Schendel D (2020) Familial confounding of the association between maternal smoking in pregnancy and autism spectrum disorder in offspring. Autism Res 13(1):134–144

  132. US-EPA (2021) Health effects notebook for hazardous air pollutants

  133. Dutheil F, Comptour A, Morlon R, Mermillod M, Pereira B, Baker JS, Charkhabi M, Clinchamps M et al (2021) Autismspectrum disorder and air pollution: a systematic review and meta-analysis. Environ Pollut 1(278):116856

  134. Bertoletti ACC, Peres KK, Faccioli LS, Vacci MC, da Mata IR, Kuyven CJ, Dal Bosco SM (2023) Early exposure to agricultural pesticides and the occurrence of autism spectrum disorder: a systematic review. Rev Paul Pediatr 9(41):e2021360

  135. Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG (2015) Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case–control analysis within the nurses’ health study II cohort. Environ Health Perspect 123(3):264–270

  136. Wang J, Xue R, Li C, Hu L, Li Q, Sun Y, Chen Y et al (2023) Inhalation of subway fine particles induces murine extrapulmonary organs damage. Sci Total Environ 878:163181

  137. Guan L, Geng X, Shen J, Yip J, Li F, Du H, Ji Z, Ding Y (2018) PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget 9(3):3765–3778

  138. Zhang T, Zheng X, Wang X, Zhao H, Wang T, Zhang H, Li W (2018) Maternal exposure to PM2.5 during pregnancy induces impaired development of cerebral cortex in mice offspring. Int J Mol Sci. 19(1):257

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cui J, Fu Y, Lu R, Bi Y, Zhang L, Zhang C, Aschner M, Li X, Chen R (2019) Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM 2.5 exposure in mice. Ecotoxicol Environ Saf 169:687–695

  140. Bernal-Meléndez E, Lacroix MC, Bouillaud P, Callebert J, Olivier B, Persuy MA, Durieux D et al (2019) Repeated gestational exposure to diesel engine exhaust affects the fetal olfactory system and alters olfactory-based behavior in rabbit offspring. Part Fibre Toxicol 16(1):5

  141. Brockmeyer S, D’Angiulli A (2016) How air pollution alters brain development: the role of neuroinflammation. Transl Neurosci 7(1):24–30

  142. Block CL, Eroglu O, Mague SD, Smith CJ, Ceasrine AM, Sriworarat C, Blount C et al (2022) Prenatal environmental stressors impair postnatal microglia function and adult behavior in males. Cell Rep 40(5):111161

  143. Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER, Hoepner LA, Garcia W et al (2022) Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry Allied Discip 63(11):1316–1331

  144. Kim D, Iosif AM, Ramirez-Celis A, Ashwood P, Ames J, Lyall K, Berger K (2023) Neonatal immune signatures differ by sex regardless of neurodevelopmental disorder status: macrophage migration inhibitory factor (MIF) alone reveals a sex by diagnosis interaction effect. Brain Behav Immun. 111:328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME (2018) Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J. Neuroinflammation 15(1):344

  146. Qiao C, Niu G, Zhao W, Quan W, Zhou Y, Zhang M, Li T (2023) RIPK1-induced A1 reactive astrocytes in brain in MPTP-treated murine model of Parkinson’s disease. Brain Sci 13(5):733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cherry JD, Meng G, Daley S, Xia W, Svirsky S, Alvarez VE, Nicks R et al (2020) CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy. J. Neuroinflammation 17(1):370

  148. Xie ST, Chen AX, Song B, Fan J, Li W, Xing Z, Peng SY et al (2020) Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. Brain Behav Immun 89:400–413

  149. Naert G, Rivest S (2012) Hematopoietic CC-chemokine receptor 2 (CCR2) competent cells are protective for the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. Mol Med 18(1):297–313

  150. Amann L, Masuda T, Prinz M (2023) Mechanisms of myeloid cell entry to the healthy and diseased central nervous system. Nat Immunol 24(3):393–407

  151. Maldonado-Ruiz R, Fuentes-Mera L, Camacho A. (2017) Central modulation of neuroinflammation by neuropeptides and energy-sensing hormones during obesity. Biomed Res Int . 2017:7949582

  152. Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P, Crozet L, Jacome-Galarza CE et al (2016) Specification of tissue-resident macrophages during organogenesis. Science 80:353

    Google Scholar 

  153. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

  154. Sbeih M, Oulès B, Alkobtawi M, Schwendimann L, Ngô QT, Fontaine R, Teissier N, Gressens P, Aractingi S (2022) CCL2 recruits fetal microchimeric cells and dampens maternal brain damage in post-partum mice. Neurobiol Dis 174:105892

  155. Cui J, Shipley FB, Shannon ML, Alturkistani O, Dani N, Webb MD, Sugden AU, Andermann ML, Lehtinen MK (2020) Inflammation of the embryonic choroid plexus barrier following maternal immune activation. Dev Cell 55(5):617–628.e6

  156. Du X, Fleiss B, Li H, D’angelo B, Sun Y, Zhu C, Hagberg H, Levy O et al (2011) Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 6(5):e19583

  157. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T et al (2017) Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep 18(2):391–405

  158. Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermüller U, Wegenast-Braun BM et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20(10):1371–1376

  159. Tay TL, Mai D, Dautzenberg J, Fernández-Klett F, Lin G, Sagar S, Datta M et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20(6):793–803

  160. Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, Perl S et al (2017) The lifespan and turnover of microglia in the human brain. Cell Rep 20(4):779–784

  161. Christ A, Günther P, Lauterbach MAR, Duewell P, Biswas D, Pelka K, Scholz CJ et al (2018) Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172(1-2):162:–175.e14

  162. Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB et al (2020) Defining trained immunity and its role in health and disease. Nat Rev Immunol 20(6):375–388

  163. Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701):332–338

  164. Weber MD, McKim DB, Niraula A, Witcher KG, Yin W, Sobol CG, Wang Y, Sawicki CM et al (2019) The influence of microglial elimination and repopulation on stress sensitization induced by repeated social defeat. Biol Psychiatry 85(8):667–678

  165. Chaney A, Cropper H, Jain P, Wilson E, Simonetta F, Johnson E, Alam I et al (2023) PET imaging of TREM1 identifies CNS-infiltrating myeloid cells in a mouse model of multiple sclerosis. Sci Transl Med. 15(702):6267

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.S. Alejandra Arreola-Triana for her support in editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MCT and ACM wrote the manuscript and design the figures.

Corresponding author

Correspondence to Alberto Camacho-Morales.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Morales, A., Cárdenas-Tueme, M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03940-z

Keywords

Navigation