Skip to main content

Advertisement

Log in

Quercetin Ameliorates Cognitive Impairment in Depression by Targeting HSP90 to Inhibit NLRP3 Inflammasome Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cognitive dysfunction was a common symptom of major depressive disorder (MDD). In previous studies, psychological stress leads to activation and proliferation of microglial cells in different brain regions. Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. To demonstrate the role of quercetin in the hippocampal inflammatory response in depress mice. The chronic unpredictable stress (CUS) depressive mice model built is used to explore the protective effects of quercetin on depression. Neurobehavioral test, protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and heat shock protein 90 (HSP90), and cytokines (IL-6, IL-1β, MCP-1, and TNF-α) were assessed. Quercetin ameliorated depressive-like behavior and cognitive impairment, and quercetin attenuates neuroinflammation and by targeting HSP90 to inhibit NLRP3 inflammasome activation. Quercetin inhibited the increase of HSP90 levels in the hippocampus and reverses inflammation-induced cognitive impairment. Besides, quercetin inhibited the increased level of cytokines (IL-6, IL-1β, MCP-1, and TNF-α) in the hippocampus of the depressive model mouse and the increased level of cytokines (IL-6, IL-1β, and MCP-1) in microglia. The current study indicated that quercetin mitigated depressive-like behavior and by targeting HSP90 to inhibit NLRP3 inflammasome activation in microglia and depressive mice model, meanwhile ameliorated cognitive impairment in depression. Quercetin has huge potential for the novel pharmacological efficacy of antidepressant therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. MacQueen GM, Memedovich KA (2017) Cognitive dysfunction in major depression and bipolar disorder: assessment and treatment options. Psychiatry Clin Neurosci 71(1):18–27. https://doi.org/10.1111/pcn.12463

    Article  PubMed  Google Scholar 

  2. McCarron RM, Shapiro B, Rawles J, Luo J (2021) Depression. Ann Intern Med 174(5):Itc65-itc80. https://doi.org/10.7326/aitc202105180

    Article  PubMed  Google Scholar 

  3. Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW (2019) Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry 24(1):18–33. https://doi.org/10.1038/s41380-018-0017-5

    Article  CAS  PubMed  Google Scholar 

  4. Zhu T, Jiang J, Hu Y, Zhang W (2022) Individualized prediction of psychiatric readmissions for patients with major depressive disorder: a 10-year retrospective cohort study. Transl Psychiatry 12(1):170. https://doi.org/10.1038/s41398-022-01937-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chottekalapanda RU, Kalik S, Gresack J, Ayala A, Gao M, Wang W, Meller S, Aly A et al (2020) AP-1 controls the p11-dependent antidepressant response. Mol Psychiatry 25(7):1364–1381. https://doi.org/10.1038/s41380-020-0767-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al Shweiki MR, Oeckl P, Steinacker P, Barschke P, Dorner-Ciossek C, Hengerer B, Schönfeldt-Lecuona C, Otto M (2020) Proteomic analysis reveals a biosignature of decreased synaptic protein in cerebrospinal fluid of major depressive disorder. Transl Psychiatry 10(1):144. https://doi.org/10.1038/s41398-020-0825-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bushnell GA, Stürmer T, Gaynes BN, Pate V, Miller M (2017) Simultaneous antidepressant and benzodiazepine new use and subsequent long-term benzodiazepine use in adults with depression, United States, 2001–2014. JAMA Psychiat 74(7):747–755. https://doi.org/10.1001/jamapsychiatry.2017.1273

    Article  Google Scholar 

  8. Yun S, Reynolds RP, Petrof I, White A, Rivera PD, Segev A, Gibson AD, Suarez M et al (2018) Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive. Nat Med 24(5):658–666. https://doi.org/10.1038/s41591-018-0002-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmid MC, Kang SW, Chen H, Paradise M, Ghebremedhin A, Kaneda MM, Chin SM, Do A et al (2022) PI3Kγ stimulates a high molecular weight form of myosin light chain kinase to promote myeloid cell adhesion and tumor inflammation. Nat Commun 13(1):1768. https://doi.org/10.1038/s41467-022-29471-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wijeratne T, Sales C (2021) Understanding why post-stroke depression may be the norm rather than the exception: the anatomical and neuroinflammatory correlates of post-stroke depression. J Clin Med 10(8). https://doi.org/10.3390/jcm10081674

  11. Franklin TC, Xu C, Duman RS (2018) Depression and sterile inflammation: essential role of danger associated molecular patterns. Brain Behav Immun 72:2–13. https://doi.org/10.1016/j.bbi.2017.10.025

    Article  CAS  PubMed  Google Scholar 

  12. Soltani Zangbar H, Ghadiri T, Seyedi Vafaee M, Ebrahimi Kalan A, Fallahi S, Ghorbani M, Shahabi P (2020) Theta oscillations through hippocampal/prefrontal pathway: importance in cognitive performances. Brain Connectivity 10(4):157–169. https://doi.org/10.1089/brain.2019.0733

    Article  PubMed  Google Scholar 

  13. Atique-Ur-Rehman H, Neill JC (2019) Cognitive dysfunction in major depression: from assessment to novel therapies. Pharmacol Ther 202:53–71. https://doi.org/10.1016/j.pharmthera.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  14. Dafsari FS, Jessen F (2020) Depression-an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl Psychiatry 10(1):160. https://doi.org/10.1038/s41398-020-0839-1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Singh-Manoux A, Dugravot A, Fournier A, Abell J, Ebmeier K, Kivimäki M, Sabia S (2017) Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study. JAMA Psychiat 74(7):712–718. https://doi.org/10.1001/jamapsychiatry.2017.0660

    Article  Google Scholar 

  16. Hayley S, Hakim AM, Albert PR (2021) Depression, dementia and immune dysregulation. Brain : J Neurol 144(3):746–760. https://doi.org/10.1093/brain/awaa405

    Article  Google Scholar 

  17. Berger T, Lee H, Young AH, Aarsland D, Thuret S (2020) Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med 26(9):803–818. https://doi.org/10.1016/j.molmed.2020.03.010

    Article  PubMed  Google Scholar 

  18. Huang Y, Xu W, Zhou R (2021) NLRP3 inflammasome activation and cell death. Cell Mol Immunol 18(9):2114–2127. https://doi.org/10.1038/s41423-021-00740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han C, Pei H, Shen H, Zhai L, Yang Y, Li W, Wang J (2023) Antcin K targets NLRP3 to suppress neuroinflammation and improve the neurological behaviors of mice with depression. Int Immunopharmacol 117:109908. https://doi.org/10.1016/j.intimp.2023.109908

    Article  CAS  PubMed  Google Scholar 

  20. Girstmair H, Tippel F, Lopez A, Tych K, Stein F, Haberkant P, Schmid PWN, Helm D et al (2019) The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range. Nat Commun 10(1):3626. https://doi.org/10.1038/s41467-019-11518-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Li C, Wan Y, Qi M, Chen Q, Sun Y, Sun X, Fang J et al (2021) Quercetin-loaded ceria nanocomposite potentiate dual-directional immunoregulation via macrophage polarization against periodontal inflammation. Small 17(41):e2101505. https://doi.org/10.1002/smll.202101505

    Article  CAS  PubMed  Google Scholar 

  22. Saccon TD, Nagpal R, Yadav H, Cavalcante MB, Nunes ADC, Schneider A, Gesing A, Hughes B et al (2021) Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J Gerontol A Biol Sci Med Sci 76(11):1895–1905. https://doi.org/10.1093/gerona/glab002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H (2021) Quercetin and metabolic syndrome: a review. Phytother Res : PTR 35(10):5352–5364. https://doi.org/10.1002/ptr.7144

    Article  CAS  PubMed  Google Scholar 

  24. Niu L, Zhang F, Xu X, Yang Y, Li S, Liu H, Le W (2022) Chronic sleep deprivation altered the expression of circadian clock genes and aggravated Alzheimer’s disease neuropathology. Brain Pathol (Zurich, Switzerland) 32(3):e13028. https://doi.org/10.1111/bpa.13028

    Article  CAS  Google Scholar 

  25. da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC, Soares JRP, Pitanga BPS et al (2020) The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun 85:170–185. https://doi.org/10.1016/j.bbi.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  26. García-Montero C, Ortega MA, Alvarez-Mon MA, Fraile-Martinez O, Romero-Bazán A, Lahera G, Montes-Rodríguez JM, Molina-Ruiz RM et al (2022) The problem of malnutrition associated with major depressive disorder from a sex-gender perspective. Nutrients 14(5). https://doi.org/10.3390/nu14051107

  27. Hutka P, Krivosova M, Muchova Z, Tonhajzerova I, Hamrakova A, Mlyncekova Z, Mokry J, Ondrejka I (2021) Association of sleep architecture and physiology with depressive disorder and antidepressants treatment. Int J Mol Sci 22(3). https://doi.org/10.3390/ijms22031333

  28. Sun Y, Zhang H, Wu Z, Yu X, Yin Y, Qian S, Wang Z, Huang J et al (2021) Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: the involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus. ACS Chem Neurosci 12(18):3387–3396. https://doi.org/10.1021/acschemneuro.1c00371

    Article  CAS  PubMed  Google Scholar 

  29. Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y et al (2022) Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 13:943321. https://doi.org/10.3389/fimmu.2022.943321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agrawal K, Chakraborty P, Dewanjee S, Arfin S, Das SS, Dey A, Moustafa M, Mishra PC et al (2023) Neuropharmacological interventions of quercetin and its derivatives in neurological and psychological disorders. Neurosci Biobehav Rev 144:104955. https://doi.org/10.1016/j.neubiorev.2022.104955

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G, Sun L (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010. https://doi.org/10.1016/j.redox.2021.102010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu S, Palavicini JP, Wang J, Gonzalez NS, He S, Dustin E, Zou C, Ding L et al (2021) Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol Neurodegener 16(1):64. https://doi.org/10.1186/s13024-021-00488-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Poelke G, Ventura MI, Byers AL, Yaffe K, Sudore R, Barnes DE (2016) Leisure activities and depressive symptoms in older adults with cognitive complaints. Int Psychogeriatr 28(1):63–69. https://doi.org/10.1017/s1041610215001246

    Article  PubMed  Google Scholar 

  34. Nowacki J, Wingenfeld K, Kaczmarczyk M, Chae WR, Abu-Tir I, Deuter CE, Piber D, Hellmann-Regen J et al (2020) Cognitive and emotional empathy after stimulation of brain mineralocorticoid and NMDA receptors in patients with major depression and healthy controls. Neuropsychopharmacol : Off Publi Am Coll Neuropsychopharmacol 45(13):2155–2161. https://doi.org/10.1038/s41386-020-0777-x

    Article  CAS  Google Scholar 

  35. Semkovska M, Quinlivan L, O’Grady T, Johnson R, Collins A, O’Connor J, Knittle H, Ahern E et al (2019) Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry 6(10):851–861. https://doi.org/10.1016/s2215-0366(19)30291-3

    Article  PubMed  Google Scholar 

  36. Steffens DC, Garrett ME, Soldano KL, McQuoid DR, Ashley-Koch AE, Potter GG (2020) Genome-wide screen to identify genetic loci associated with cognitive decline in late-life depression. Int Psychogeriatr 1–9. https://doi.org/10.1017/s1041610220001143

  37. Pinto B, Morelli G, Rastogi M, Savardi A, Fumagalli A, Petretto A, Bartolucci M, Varea E et al (2020) Rescuing over-activated microglia restores cognitive performance in juvenile animals of the Dp(16) mouse model of Down syndrome. Neuron 108(5):887-904.e812. https://doi.org/10.1016/j.neuron.2020.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 94:112–120. https://doi.org/10.1016/j.semcdb.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Tiwari M (2017) The role of serratiopeptidase in the resolution of inflammation. Asian J Pharm Sci 12(3):209–215. https://doi.org/10.1016/j.ajps.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim JY, Hwang M, Choi NY, Koh SH (2023) Inhibition of the NLRP3 inflammasome activation/assembly through the activation of the PI3k pathway by naloxone protects neural stem cells from ischemic condition. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03418-4

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trageser KJ, Yang EJ, Smith C, Iban-Arias R, Oguchi T, Sebastian-Valverde M, Iqbal UH, Wu H et al (2023) Inflammasome-mediated neuronal-microglial crosstalk: a therapeutic substrate for the familial C9orf72 variant of frontotemporal dementia/amyotrophic lateral sclerosis. Mol Neurobiol 60(7):4004–4016. https://doi.org/10.1007/s12035-023-03315-w

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Tong L, Schock BC, Ji LL (2023) Post-traumatic stress disorder: focus on neuroinflammation. Mol Neurobiol 60(7):3963–3978. https://doi.org/10.1007/s12035-023-03320-z

    Article  CAS  PubMed  Google Scholar 

  43. Zhang D, Li S, Hou L, Jing L, Ruan Z, Peng B, Zhang X, Hong JS et al (2021) Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson’s disease model. J Neuroinflammation 18(1):4. https://doi.org/10.1186/s12974-020-02065-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dahchour A (2022) Anxiolytic and antidepressive potentials of rosmarinic acid: a review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 184:106421. https://doi.org/10.1016/j.phrs.2022.106421

    Article  CAS  PubMed  Google Scholar 

  45. Chan SY, Capitão L, Probert F, Klinge C, Hoeckner S, Harmer CJ, Cowen PJ, Anthony DC et al (2020) A single administration of the antibiotic, minocycline, reduces fear processing and improves implicit learning in healthy volunteers: analysis of the serum metabolome. Transl Psychiatry 10(1):148. https://doi.org/10.1038/s41398-020-0818-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han M, Schottler F, Lei D, Dong EY, Bryan A, Bao J (2006) Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus. Mol Neurodegener 1:9. https://doi.org/10.1186/1750-1326-1-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel G, Thakur NS, Kushwah V, Patil MD, Nile SH, Jain S, Banerjee UC, Kai G (2020) Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front Bioeng Biotechnol 8:631. https://doi.org/10.3389/fbioe.2020.00631

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA (2021) Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 93:108634. https://doi.org/10.1016/j.jnutbio.2021.108634

    Article  CAS  PubMed  Google Scholar 

  49. Bieri G, Schroer AB, Villeda SA (2023) Blood-to-brain communication in aging and rejuvenation. Nat Neurosci 26(3):379–393. https://doi.org/10.1038/s41593-022-01238-8

    Article  CAS  PubMed  Google Scholar 

  50. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK (2021) An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 18(5):1141–1160. https://doi.org/10.1038/s41423-021-00670-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen KP, Hua KF, Tsai FT, Lin TY, Cheng CY, Yang DI, Hsu HT, Ju TC (2022) A selective inhibitor of the NLRP3 inflammasome as a potential therapeutic approach for neuroprotection in a transgenic mouse model of Huntington’s disease. J Neuroinflammation 19(1):56. https://doi.org/10.1186/s12974-022-02419-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duan Y, Zhang L, Angosto-Bazarra D, Pelegrin P, Nunez G, He Y (2020) RACK1 mediates NLRP3 inflammasome activation by promoting NLRP3 active conformation and inflammasome assembly. Cell Rep 33(7):108405. https://doi.org/10.1016/j.celrep.2020.108405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martine P, Chevriaux A, Derangere V, Apetoh L, Garrido C, Ghiringhelli F, Rebe C (2019) HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death Dis 10(4):256. https://doi.org/10.1038/s41419-019-1491-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu G, Fu S, Zhan X, Wang Z, Zhang P, Shi W, Qin N, Chen Y et al (2021) Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90. JCI Insight 6(2). https://doi.org/10.1172/jci.insight.134601

  55. Song Q, Wen J, Li W, Xue J, Zhang Y, Liu H, Han J, Ning T et al (2022) HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination. Cancer Sci 113(4):1463–1474. https://doi.org/10.1111/cas.15269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhattacharya K, Picard D (2021) The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell Mol Life Sci 78(23):7257–7273. https://doi.org/10.1007/s00018-021-03962-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ranta-Aho S, Piippo N, Korhonen E, Kaarniranta K, Hytti M, Kauppinen A (2021) TAS-116, a well-tolerated Hsp90 inhibitor, prevents the activation of the NLRP3 inflammasome in human retinal pigment epithelial cells. Int J Mol Sci 22(9). https://doi.org/10.3390/ijms22094875

  58. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2015) Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharmacol Toxicol 55:353–371. https://doi.org/10.1146/annurev-pharmtox-010814-124332

    Article  CAS  PubMed  Google Scholar 

  59. Danics L, Schvarcz CA, Viana P, Vancsik T, Krenacs T, Benyo Z, Kaucsar T, Hamar P (2020) Exhaustion of protective heat shock response induces significant tumor damage by apoptosis after modulated electro-hyperthermia treatment of triple negative breast cancer isografts in mice. Cancers (Basel) 12(9). https://doi.org/10.3390/cancers12092581

  60. Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L (2016) Hsp72 and Hsp90alpha mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 21(6):1021–1035. https://doi.org/10.1007/s12192-016-0726-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all of our authors for their help and contributions to this project.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 82001425), Natural Science Foundation of Jiangsu Province (No. BK20201223), Key Project of Jiangsu Provincial Health Commission (No. ZDB2020019), and Double-Innovation Doctor of Jiangsu Province (No. 2020–30199).

Author information

Authors and Affiliations

Authors

Contributions

L. D. designed the experiments, data extraction, and analysis. L. D. and X. F. performed in experiments. Y. Y. supervised the work. L. D., X. F., S. W., and Y. L. wrote the manuscript with input from all authors. L. D., Y. Y., and Y. L. contributed to revising it critically for important intellectual content of the review.

Corresponding authors

Correspondence to Shusheng Wu or Yuan Liu.

Ethics declarations

Ethics Approval

All the animal procedures were performed in strict accordance with the guidelines and regulations proposed by the Animal Ethics Committee. The care and use of animals were reviewed and approved by the Institutional Animal Care and Use Committee at the School of Yang Zhou University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 498 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Fan, X., Yang, Y. et al. Quercetin Ameliorates Cognitive Impairment in Depression by Targeting HSP90 to Inhibit NLRP3 Inflammasome Activation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03926-x

Keywords

Navigation