Skip to main content

Advertisement

Log in

H2S Regulates the Phenotypic Transformation of Astrocytes Following Cerebral Ischemia/Reperfusion via Inhibiting the RhoA/ROCK Pathway

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of hydrogen sulfide (H2S) on the phenotypic change of astrocytes following cerebral ischemia/reperfusion (I/R) in mice was investigated in present study. We tested the expression of glial fibrillary acidic protein (GFAP), A2 phenotype marker S100a10, and A1 phenotype marker C3 protein and assessed the change of BrdU/GFAP-positive cells, GFAP/C3-positive cells, and GFAP/S100a10-positive cells in mice hippocampal tissues to evaluate the change of astrocyte phenotypes following cerebral I/R. The role of H2S on the phenotypic change of astrocytes following cerebral I/R in mice was investigated by using H2S synthase cystathionine-γ-lyase (CSE) knockout mice (KO). The results revealed that cerebral I/R injury promoted the astrocytes proliferation of both A1 and A2 phenotypes, which were more significant in mice of H2S synthase CSE KO than in mice of wild type (WT). Interestingly, supplement with H2S could inhibit the A1 phenotype proliferation but promote the proliferation of A2 phenotype, suggesting that H2S could regulate the transformation of astrocytes to A2 phenotype following cerebral I/R, which is beneficial for neuronal recovery. Besides, we found that H2S-mediated change of astrocyte phenotype is related to inhibiting the RhoA/ROCK pathway. Furthermore, both H2S and ROCK inhibitor could ameliorate the brain injury of mice at 9 days after cerebral I/R. In conclusion, H2S regulates the phenotypic transformation of astrocytes to A2 phenotype following the cerebral I/R via inhibiting RhoA/ROCK pathway and then exerts the neuroprotective effect against the subacute brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data and materials are available on reasonable request.

Abbreviations

WT:

Wild type

CSE KO:

CSE knockout

CCAs:

Bilateral common carotid arteries

GFAP:

Glial fibrillary acidic protein

ROCK:

Rho kinase

CNS:

Cerebral nervous system

H2S:

Hydrogen sulfide

CO:

Monoxide

NO:

Nitric oxide

CSE:

Cystathionine γ-lyase

CBS:

Cystathionine β-synthase

3-MST:

3-Mercaptopyruvate sulfurtransferase

BrdU:

Bromodeoxyuridine

OFT:

Open-field test

MWM:

Morris water maze

H&E:

Hematoxylin and eosin staining

NSE:

Neuron-specific enolase

LDH:

Lactate dehydrogenase

PAGE:

SDS-polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

DAPI:

Anti-4′,6-diamidino-2-phenylindole

MBP:

Myelin basic protein

NeuN:

Neuronal nuclei

References

  1. Herpich F, Rincon F (2020) Management of acute ischemic stroke. Crit Care Med 48(11):1654–1663. https://doi.org/10.1097/CCM.0000000000004597

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A (2004) Targets for vascular protection after acute ischemic stroke. Stroke 35(9):2220–2225. https://doi.org/10.1161/01.STR.0000138023.60272.9e

    Article  CAS  PubMed  Google Scholar 

  3. Paul S, Candelario-Jalil E (2021) Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol 335:113518. https://doi.org/10.1016/j.expneurol.2020.113518

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Wang J, Li H, Xue M, Ji A, Li Y (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid Med Cell Longev 2015:186908. https://doi.org/10.1155/2015/186908

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deng G, Muqadas M, Adlat S, Zheng H, Li G, Zhu P, Nasser MI (2023) Protective effect of hydrogen sulfide on cerebral ischemia-reperfusion injury. Cell Mol Neurobiol 43(1):15–25. https://doi.org/10.1007/s10571-021-01166-4

    Article  CAS  PubMed  Google Scholar 

  6. Powell CR, Dillon KM, Matson JB (2018) A review of hydrogen sulfide (H2S) donors: chemistry and potential therapeutic applications. Biochem Pharmacol 149:110–123. https://doi.org/10.1016/j.bcp.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  7. Wen JY, Wang M, Li YN, Jiang HH, Sun XJ, Chen ZW (2018) Vascular protection of hydrogen sulfide on cerebral ischemia/reperfusion injury in rats. Front Neurol 9:779. https://doi.org/10.3389/fneur.2018.00779

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wen JY, Gao SS, Chen FL, Chen S, Wang M, Chen ZW (2019) Role of CSE-produced H2S on cerebrovascular relaxation via RhoA-ROCK inhibition and cerebral ischemia-reperfusion injury in mice. ACS Chem Neurosci 10(3):1565–1574. https://doi.org/10.1021/acschemneuro.8b00533

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y, Li K, Wang X, Ding Y, Ren Z, Fang J, Sun T, Guo Y et al (2021) CSE-derived H(2)S inhibits reactive astrocytes proliferation and promotes neural functional recovery after cerebral ischemia/reperfusion injury in mice via inhibition of RhoA/ROCK(2) pathway. ACS Chem Neurosci 12(14):2580–2590. https://doi.org/10.1021/acschemneuro.0c00674

    Article  CAS  PubMed  Google Scholar 

  10. Escartin C, Galea E, Lakatos A, O’callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24(3):312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L et al (2021) Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation 18(1):230. https://doi.org/10.1186/s12974-021-02284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Yin W, Tu Y, Wang S, Yang X, Chen Q, Zhang X, Han Y et al (2017) L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo: Involvement of NF-kappaB inhibition and Nrf2 pathway activation. Eur J Pharmacol 806:1–9. https://doi.org/10.1016/j.ejphar.2017.03.025

    Article  CAS  PubMed  Google Scholar 

  14. Han Y, Li X, Yang L, Zhang D, Li L, Dong X, Li Y, Qun S et al (2022) Ginsenoside Rg1 attenuates cerebral ischemia-reperfusion injury due to inhibition of NOX2-mediated calcium homeostasis dysregulation in mice. J Ginseng Res 46(4):515–525. https://doi.org/10.1016/j.jgr.2021.08.001

    Article  PubMed  Google Scholar 

  15. Ding Y, Liu B, Zhang Y, Fang F, Li X, Wang S, Wen J (2022) Hydrogen sulphide protects mice against the mutual aggravation of cerebral ischaemia/reperfusion injury and colitis. Eur J Pharmacol 914:174682. https://doi.org/10.1016/j.ejphar.2021.174682

    Article  CAS  PubMed  Google Scholar 

  16. Song AQ, Gao B, Fan JJ, Zhu YJ, Zhou J, Wang YL, Xu LZ, Wu WN (2020) NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice. J Neuroinflammation 17(1):178. https://doi.org/10.1186/s12974-020-01848-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Li K, Wang X, Ding Y, Ren Z, Fang J, Sun T, Guo Y et al (2021) CSE-derived H2S inhibits reactive astrocytes proliferation and promotes neural functional recovery after cerebral ischemia/reperfusion injury in mice via inhibition of RhoA/ROCK2 pathway. ACS Chem Neurosci 12(14):2580–2590. https://doi.org/10.1021/acschemneuro.0c00674

    Article  CAS  PubMed  Google Scholar 

  18. Sun YW, Luo YP, Zheng XL, Wu XY, Wen HZ, Hou WS (2021) Multiple sessions of entorhinal cortex deep brain stimulation in C57BL/6J mice increases exploratory behavior and hippocampal neurogenesis(). Annu Int Conf IEEE Eng Med Biol Soc 2021:6390–6393. https://doi.org/10.1109/EMBC46164.2021.9629978

    Article  PubMed  Google Scholar 

  19. Chen Y, Wen J, Chen Z (2021) H2S protects hippocampal neurons against hypoxia-reoxygenation injury by promoting RhoA phosphorylation at Ser188. Cell Death Discov 7(1):132. https://doi.org/10.1038/s41420-021-00514-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wen JY, Zhang J, Chen S, Chen Y, Zhang Y, Ma ZY, Zhang F, Xie WM et al (2021) Endothelium-derived hydrogen sulfide acts as a hyperpolarizing factor and exerts neuroprotective effects via activation of large-conductance Ca(2+) -activated K(+) channels. Br J Pharmacol 178(20):4155–4175. https://doi.org/10.1111/bph.15607

    Article  CAS  PubMed  Google Scholar 

  21. Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK (2019) Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 16(1):227. https://doi.org/10.1186/s12974-019-1597-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyamoto N, Magami S, Inaba T, Ueno Y, Hira K, Kijima C, Nakajima S, Yamashiro K et al (2020) The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia 68(9):1910–1924. https://doi.org/10.1002/glia.23814

    Article  PubMed  Google Scholar 

  23. Hernandez IH, Villa-Gonzalez M, Martin G, Soto M, Perez-Alvarez MJ (2021) Glial cells as therapeutic approaches in brain ischemia-reperfusion injury. Cells 10(7):1639. https://doi.org/10.3390/cells10071639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y, Meng X, Sun L, Pei K, Chen L, Zhang S, Hu M (2022) Protective effects of hydroxy-alpha-sanshool from the pericarp of Zanthoxylum bungeanum Maxim. On D-galactose/AlCl3-induced Alzheimer’s disease-like mice via Nrf2/HO-1 signaling pathways. Eur J Pharmacol 914:174691. https://doi.org/10.1016/j.ejphar.2021.174691

    Article  CAS  PubMed  Google Scholar 

  25. Guo S, Wang R, Hu J, Sun L, Zhao X, Zhao Y, Han D, Hu S (2021) Photobiomodulation promotes hippocampal CA1 NSC differentiation toward neurons and facilitates cognitive function recovery involving NLRP3 inflammasome mitigation following global cerebral ischemia. Front Cell Neurosci 15:731855. https://doi.org/10.3389/fncel.2021.731855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng J, Zhang T, Han S, Liu C, Liu M, Li S, Li J (2021) Activin A improves the neurological outcome after ischemic stroke in mice by promoting oligodendroglial ACVR1B-mediated white matter remyelination. Exp Neurol 337:113574. https://doi.org/10.1016/j.expneurol.2020.113574

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Yao N, Zhang T, Guo F, Niu X, Wu Z, Hou S (2020) Ability of post-treatment glycyrrhizic acid to mitigate cerebral ischemia/reperfusion injury in diabetic mice. Medical Science Monitor 26:926551. https://doi.org/10.12659/MSM.926551

    Article  Google Scholar 

  28. Renner M, Stute G, Alzureiqi M, Reinhard J, Wiemann S, Schmid H, Faissner A, Dick HB et al (2017) Optic nerve degeneration after retinal ischemia/reperfusion in a rodent model. Front Cell Neurosci 11:254. https://doi.org/10.3389/fncel.2017.00254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanavaki A, Spengos K, Moraki M, Delaporta P, Kariyannis C, Papassotiriou I, Kattamis A (2017) Serum levels of S100b and NSE proteins in patients with non-transfusion-dependent thalassemia as biomarkers of brain ischemia and cerebral vasculopathy. Int J Mol Sci 18(12):2724. https://doi.org/10.3390/ijms18122724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR, Group NR-PSS (2006) Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator stroke study. Stroke 37(10):2508–2513. https://doi.org/10.1161/01.STR.0000242290.01174.9e

    Article  CAS  PubMed  Google Scholar 

  31. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  32. Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S et al (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 23(7):818–828. https://doi.org/10.1038/nm.4354

    Article  CAS  PubMed  Google Scholar 

  33. Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X (2021) Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 15:755955. https://doi.org/10.3389/fncel.2021.755955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504(7480):394–400. https://doi.org/10.1038/nature12776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morizawa YM, Hirayama Y, Ohno N, Shibata S, Shigetomi E, Sui Y, Nabekura J, Sato K et al (2017) Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 8(1):28. https://doi.org/10.1038/s41467-017-00037-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Juric M, Balog M, Ivic V, Benzon B, Racetin A, Bocina I, Kevic N, Konjevoda S et al (2021) Chronic stress and gonadectomy affect the expression of Cx37, Cx40 and Cx43 in the spinal cord. Life (Basel) 11(12):1330. https://doi.org/10.3390/life11121330

    Article  CAS  PubMed  Google Scholar 

  37. Li G, Zhang S, Cheng Y, Lu Y, Jia Z, Yang X, Zhang S, Guo W et al (2022) Baicalin suppresses neuron autophagy and apoptosis by regulating astrocyte polarization in pentylenetetrazol-induced epileptic rats and PC12 cells. Brain Res 1774:147723. https://doi.org/10.1016/j.brainres.2021.147723

    Article  CAS  PubMed  Google Scholar 

  38. Jiang S, Wang H, Zhou Q, Li Q, Liu N, Li Z, Chen C, Deng Y (2021) Melatonin ameliorates axonal hypomyelination of periventricular white matter by transforming A1 to A2 astrocyte via JAK2/STAT3 pathway in septic neonatal rats. J Inflamm Res 14:5919–5937. https://doi.org/10.2147/JIR.S337499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bros M, Haas K, Moll L, Grabbe S (2019) RhoA as a key regulator of innate and adaptive immunity. Cells 8(7):733. https://doi.org/10.3390/cells8070733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koch JC, Tonges L, Barski E, Michel U, Bahr M, Lingor P (2014) ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 5:e1225. https://doi.org/10.1038/cddis.2014.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong P, Li R, Jia HY, Ma Z, Li XY, Dai XR, Luo SY (2020) Anfibatide preserves blood-brain barrier integrity by inhibiting TLR4/RhoA/ROCK pathway after cerebral ischemia/reperfusion injury in rat. J Mol Neurosci 70(1):71–83. https://doi.org/10.1007/s12031-019-01402-z

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Miao L, Peng Q, Fan X, Song W, Yang B, Zhang P, Liu G et al (2022) Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. Phytomedicine 105:154373. https://doi.org/10.1016/j.phymed.2022.154373

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Wen J, Chen Z (2021) H(2)S protects hippocampal neurons against hypoxia-reoxygenation injury by promoting RhoA phosphorylation at Ser188. Cell Death Discov 7(1):132. https://doi.org/10.1038/s41420-021-00514-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang F, Sheng J, Guo Y, Wen J, Chen Z (2023) Protection of H(2)S against hypoxia/reoxygenation injury in rat hippocampal neurons through inhibiting phosphorylation of ROCK(2) at Thr436 and Ser575. Pharmaceuticals (Basel, Switzerland) 16(2):218. https://doi.org/10.3390/ph16020218

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Liao S, Quan H, Lin Y, Li J, Yang Q (2016) Involvement of microRNA-135a-5p in the protective effects of hydrogen sulfide against Parkinson’s disease. Cell Physiol Biochem 40(1–2):18–26. https://doi.org/10.1159/000452521

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Sun Z, Jin M, Tu Y, Wang S, Yang X, Chen Q, Zhang X et al (2017) Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-kappaB pathway. J Neuroimmunol 305:108–114. https://doi.org/10.1016/j.jneuroim.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  47. Tsukahara R, Ueda H (2016) Myelin-related gene silencing mediated by LPA1 - Rho/ROCK signaling is correlated to acetylation of NFkappaB in S16 Schwann cells. J Pharmacol Sci 132(2):162–165. https://doi.org/10.1016/j.jphs.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  48. Zhu L, Chen T, Chang X, Zhou R, Luo F, Liu J, Zhang K, Wang Y et al (2016) Salidroside ameliorates arthritis-induced brain cognition deficits by regulating Rho/ROCK/NF-kappaB pathway. Neuropharmacology 103:134–142. https://doi.org/10.1016/j.neuropharm.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  49. Guo H, Yang J, Liu M, Wang L, Hou W, Zhang L, Ma Y (2020) Selective activation of estrogen receptor beta alleviates cerebral ischemia neuroinflammatory injury. Brain Res 1726:146536. https://doi.org/10.1016/j.brainres.2019.146536

    Article  CAS  PubMed  Google Scholar 

  50. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J et al (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  51. Moreno-Garcia A, Bernal-Chico A, Colomer T, Rodriguez-Antiguedad A, Matute C, Mato S (2020) Gene expression analysis of astrocyte and microglia endocannabinoid signaling during autoimmune demyelination. Biomolecules 10(9):1228. https://doi.org/10.3390/biom10091228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Wang X, Jiang C, Chen Z, Ni S, Fan H, Wang Z, Tian F et al (2022) Rho kinase inhibitor Y27632 improves recovery after spinal cord injury by shifting astrocyte phenotype and morphology via the ROCK/NF-kappaB/C3 pathway. Neurochem Res 47(12):3733–3744. https://doi.org/10.1007/s11064-022-03756-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of Colleges and Universities in Anhui Province (No. 2023AH050672) and Natural Science Foundation of Anhui Province (NO. 2308085MH302).

Author information

Authors and Affiliations

Authors

Contributions

JW and ZC designed the manuscript. YD, XL, and FF carried out experiments and wrote the manuscript. XL and XY performed the behavioral experiments in mice. YD performed the ELISA and analyzed the data. SS, JW, and ZC contributed to funding acquisition, supervision, and editing.

Corresponding authors

Correspondence to Zhiwu Chen or Jiyue Wen.

Ethics declarations

Ethics Approval

The animal experiments were approved by the Ethical Committee of Anhui Medical University, and all experimental protocols complied with the regulations set by animal care and use committee in Anhui Medical University, which comply with the protocol outlined in the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication no. 85–23, revised 2011).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Fang, F., Liu, X. et al. H2S Regulates the Phenotypic Transformation of Astrocytes Following Cerebral Ischemia/Reperfusion via Inhibiting the RhoA/ROCK Pathway. Mol Neurobiol 61, 3179–3197 (2024). https://doi.org/10.1007/s12035-023-03797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03797-8

Keywords

Navigation