Skip to main content
Log in

Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of the study are available from the corresponding author upon reasonable request.

References

  1. Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170

    Article  CAS  PubMed  Google Scholar 

  2. Li S, Sheng ZH (2022) Energy matters: presynaptic metabolism and the maintenance of synaptic transmission. Nat Rev Neurosci 23(1):4–22. https://doi.org/10.1038/s41583-021-00535-8

    Article  CAS  PubMed  Google Scholar 

  3. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. https://doi.org/10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. https://doi.org/10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  5. De Pinto VD, Palmieri F (1992) Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). J Bioenerg Biomembr 24(1):21–26. https://doi.org/10.1007/BF00769526

    Article  PubMed  Google Scholar 

  6. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427(6972):360–364. https://doi.org/10.1038/nature02246

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Jin M, Wang Y, Zhu J, Tan R, Zhao J, Ji X, Jin C et al (2020) MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduct Target Ther 5(1):59. https://doi.org/10.1038/s41392-020-0155-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216

    Article  CAS  PubMed  Google Scholar 

  9. Giorgi C, Marchi S, Pinton P (2018) The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 19(11):713–730. https://doi.org/10.1038/s41580-018-0052-8

    Article  CAS  PubMed  Google Scholar 

  10. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641-657. https://doi.org/10.1152/ajpcell.00222.2006

    Article  CAS  PubMed  Google Scholar 

  11. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23(21):7881–7888. https://doi.org/10.1523/JNEUROSCI.23-21-07881.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8(12):1668–1675. https://doi.org/10.1111/j.1600-0854.2007.00644.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faitg J, Lacefield C, Davey T, White K, Laws R, Kosmidis S, Reeve AK, Kandel ER, et al (2021) 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep 36(6):109509. https://doi.org/10.1016/j.celrep.2021.109509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zenisek D, Matthews G (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25(1):229–237. https://doi.org/10.1016/s0896-6273(00)80885-5

    Article  CAS  PubMed  Google Scholar 

  15. Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22(14):5840–5847. https://doi.org/10.1523/JNEUROSCI.22-14-05840.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang Y, Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18(3):483–491. https://doi.org/10.1016/s0896-6273(00)81248-9

    Article  CAS  PubMed  Google Scholar 

  17. Lehninger AL, Carafoli E, Rossi CS (1967) Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol 29:259–320. https://doi.org/10.1002/9780470122747.ch6

    Article  CAS  PubMed  Google Scholar 

  18. Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A, Rizzuto R (2018) Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Arch 470(8):1165–1179. https://doi.org/10.1007/s00424-018-2123-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52(1):28–35. https://doi.org/10.1016/j.ceca.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492(1):50–65. https://doi.org/10.1002/cne.20682

    Article  PubMed  Google Scholar 

  21. Gerencser AA, Adam-Vizi V (2005) Mitochondrial Ca2+ dynamics reveals limited intramitochondrial Ca2+ diffusion. Biophys J 88(1):698–714. https://doi.org/10.1529/biophysj.104.050062

    Article  CAS  PubMed  Google Scholar 

  22. Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89(7):1145–1153. https://doi.org/10.1016/s0092-8674(00)80301-3

    Article  CAS  PubMed  Google Scholar 

  23. Malli R, Frieden M, Osibow K, Zoratti C, Mayer M, Demaurex N, Graier WF (2003) Sustained Ca2+ transfer across mitochondria is Essential for mitochondrial Ca2+ buffering, sore-operated Ca2+ entry, and Ca2+ store refilling. J Biol Chem 278(45):44769–44779. https://doi.org/10.1074/jbc.M302511200

    Article  CAS  PubMed  Google Scholar 

  24. Villalobos C, Nunez L, Montero M, Garcia AG, Alonso MT, Chamero P, Alvarez J, Garcia-Sancho J (2002) Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells. FASEB J 16(3):343–353. https://doi.org/10.1096/fj.01-0630com

    Article  CAS  PubMed  Google Scholar 

  25. Wu XS, Lee SH, Sheng J, Zhang Z, Zhao WD, Wang D, Jin Y, Charnay P et al (2016) Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron 92(5):1020–1035. https://doi.org/10.1016/j.neuron.2016.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, Fedotova EI, Berezhnov AV, De S et al (2022) Pathological structural conversion of alpha-synuclein at the mitochondria induces neuronal toxicity. Nat Neurosci 25(9):1134–1148. https://doi.org/10.1038/s41593-022-01140-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novorolsky RJ, Nichols M, Kim JS, Pavlov EV, Woods JJ, Wilson JJ, Robertson GS (2020) The cell-permeable mitochondrial calcium uniporter inhibitor Ru265 preserves cortical neuron respiration after lethal oxygen glucose deprivation and reduces hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 40(6):1172–1181. https://doi.org/10.1177/0271678X20908523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwon SK, Sando R 3rd, Lewis TL, Hirabayashi Y, Maximov A, Polleux F (2016) LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons. PLoS Biol 14(7):e1002516. https://doi.org/10.1371/journal.pbio.1002516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lewis TL Jr, Kwon SK, Lee A, Shaw R, Polleux F (2018) MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun 9(1):5008. https://doi.org/10.1038/s41467-018-07416-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martineau M, Somasundaram A, Grimm JB, Gruber TD, Choquet D, Taraska JW, Lavis LD, Perrais D (2017) Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis. Nat Commun 8(1):1412. https://doi.org/10.1038/s41467-017-01752-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, Erfani P, Raczkowski A, et al (2017) ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science 358(6363):623–630. https://doi.org/10.1126/science.aan6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153. https://doi.org/10.1038/ncomms5153

    Article  CAS  PubMed  Google Scholar 

  33. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345. https://doi.org/10.1038/nature10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. https://doi.org/10.1038/nature10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woods JJ, Nemani N, Shanmughapriya S, Kumar A, Zhang M, Nathan SR, Thomas M, Carvalho E et al (2019) A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury. ACS Cent Sci 5(1):153–166. https://doi.org/10.1021/acscentsci.8b00773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benz R, McLaughlin S (1983) The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys J 41(3):381–398. https://doi.org/10.1016/S0006-3495(83)84449-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carriedo SG, Sensi SL, Yin HZ, Weiss JH (2000) AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20(1):240–250. https://doi.org/10.1523/JNEUROSCI.20-01-00240.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB (2009) Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci U S A 106(24):9854–9859. https://doi.org/10.1073/pnas.0903546106

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mangiavacchi S, Wolf ME (2004) Stimulation of N-methyl-D-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons. Eur J Neurosci 20(3):649–657. https://doi.org/10.1111/j.1460-9568.2004.03511.x

    Article  PubMed  Google Scholar 

  40. de Juan-Sanz J, Holt GT, Schreiter ER, de Juan F, Kim DS, Ryan TA (2017) Axonal Endoplasmic Reticulum Ca(2+) Content Controls Release Probability in CNS Nerve Terminals. Neuron 93(4):867–881. https://doi.org/10.1016/j.neuron.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng H, Lederer MR, Lederer WJ, Cannell MB (1996) Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 270(1 Pt 1):C148-159. https://doi.org/10.1152/ajpcell.1996.270.1.C148

    Article  CAS  PubMed  Google Scholar 

  42. Newman EA, Zahs KR (1997) Calcium waves in retinal glial cells. Science 275(5301):844–847. https://doi.org/10.1126/science.275.5301.844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amaya MJ, Nathanson MH (2013) Calcium signaling in the liver. Compr Physiol 3(1):515–539. https://doi.org/10.1002/cphy.c120013

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adelsberger H, Garaschuk O, Konnerth A (2005) Cortical calcium waves in resting newborn mice. Nat Neurosci 8(8):988–990. https://doi.org/10.1038/nn1502

    Article  CAS  PubMed  Google Scholar 

  45. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19(8):346–352. https://doi.org/10.1016/0166-2236(96)10048-5

    Article  CAS  PubMed  Google Scholar 

  46. Ross WN (2012) Understanding calcium waves and sparks in central neurons. Nat Rev Neurosci 13(3):157–168. https://doi.org/10.1038/nrn3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nakamura T, Lasser-Ross N, Nakamura K, Ross WN (2002) Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J Physiol 543(Pt 2):465–480. https://doi.org/10.1113/jphysiol.2002.020362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545. https://doi.org/10.1152/physrev.00030.2007

    Article  CAS  PubMed  Google Scholar 

  49. Montero M, Alonso MT, Carnicero E, Cuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61. https://doi.org/10.1038/35000001

    Article  CAS  PubMed  Google Scholar 

  50. Monteith GR, Blaustein MP (1999) Heterogeneity of mitochondrial matrix free ca2+: resolution of Ca2+ dynamics in individual mitochondria in situ. Am J Physiol 276(5):C1193-1204. https://doi.org/10.1152/ajpcell.1999.276.5.C1193

    Article  CAS  PubMed  Google Scholar 

  51. Drummond RM, Mix TC, Tuft RA, Walsh JV Jr, Fay FS (2000) Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus. J Physiol 522(Pt 3):375–390. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00375.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H (2015) Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods 12(1):64–70. https://doi.org/10.1038/nmeth.3185

    Article  CAS  PubMed  Google Scholar 

  53. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. https://doi.org/10.1016/j.neuron.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  54. Smith NA, Kress BT, Lu Y, Chandler-Militello D, Benraiss A, Nedergaard M (2018) Fluorescent Ca(2+) indicators directly inhibit the Na, K-ATPase and disrupt cellular functions. Sci Signal 11(515):eaal2039. https://doi.org/10.1126/scisignal.aal2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marland JR, Hasel P, Bonnycastle K, Cousin MA (2016) Mitochondrial Calcium Uptake Modulates Synaptic Vesicle Endocytosis in Central Nerve Terminals. J Biol Chem 291(5):2080–2086. https://doi.org/10.1074/jbc.M115.686956

    Article  CAS  PubMed  Google Scholar 

  56. Campbell TN, Choy FY (2001) The effect of pH on green fluorescent protein: a brief review. Mol Biol Today 2(1):1–4. https://www.caister.com/backlist/mbt/v/v2/01.pdf

  57. Perez Koldenkova V, Nagai T (1833) Genetically encoded Ca(2+) indicators: properties and evaluation. Biochim Biophys Acta 7:1787–1797. https://doi.org/10.1016/j.bbamcr.2013.01.011

    Article  CAS  Google Scholar 

  58. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840. https://doi.org/10.1523/JNEUROSCI.2601-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2. https://doi.org/10.3389/fnmol.2013.00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Leybaert L, Sanderson MJ (2012) Intercellular Ca(2+) waves: mechanisms and function. Physiol Rev 92(3):1359–1392. https://doi.org/10.1152/physrev.00029.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Larkum ME, Watanabe S, Nakamura T, Lasser-Ross N, Ross WN (2003) Synaptically activated Ca2+ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J Physiol 549(Pt 2):471–488. https://doi.org/10.1113/jphysiol.2002.037614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Schwarz TL (2009) The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136(1):163–174. https://doi.org/10.1016/j.cell.2008.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104(Pt 3):917–927. https://doi.org/10.1242/jcs.104.3.917

    Article  PubMed  Google Scholar 

  64. Ngo J, Osto C, Villalobos F, Shirihai OS (2021) Mitochondrial heterogeneity in metabolic diseases. Biology (Basel) 10(9):927. https://doi.org/10.3390/biology10090927

    Article  CAS  PubMed  Google Scholar 

  65. Ryu SY, Peixoto PM, Won JH, Yule DI, Kinnally KW (2010) Extracellular ATP and P2Y2 receptors mediate intercellular Ca(2+) waves induced by mechanical stimulation in submandibular gland cells: Role of mitochondrial regulation of store operated Ca(2+) entry. Cell Calcium 47(1):65–76. https://doi.org/10.1016/j.ceca.2009.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brodin L, Bakeeva L, Shupliakov O (1999) Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354(1381):365–372. https://doi.org/10.1098/rstb.1999.0388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Skulachev VP (2001) Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26(1):23–29. https://doi.org/10.1016/s0968-0004(00)01735-7

    Article  CAS  PubMed  Google Scholar 

  68. Ryu SY, Beutner G, Dirksen RT, Kinnally KW, Sheu SS (2010) Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 584(10):1948–1955. https://doi.org/10.1016/j.febslet.2010.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326(5949):144–147. https://doi.org/10.1126/science.1175145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Feng S, Li H, Tai Y, Huang J, Su Y, Abramowitz J, Zhu MX, Birnbaumer L, Wang Y (2013) Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci U S A 110(27):11011–11016. https://doi.org/10.1073/pnas.1309531110

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96(24):13807–13812. https://doi.org/10.1073/pnas.96.24.13807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boyman L, Karbowski M, Lederer WJ (2020) Regulation of Mitochondrial ATP Production: Ca(2+) Signaling and Quality Control. Trends Mol Med 26(1):21–39. https://doi.org/10.1016/j.molmed.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  73. Szabadkai G, Simoni AM, Bianchi K, De Stefani D, Leo S, Wieckowski MR, Rizzuto R (2006) Mitochondrial dynamics and Ca2+ signaling. Bba-Mol Cell Res 1763(5–6):442–449. https://doi.org/10.1016/j.bbamcr.2006.04.002

    Article  CAS  Google Scholar 

  74. Bianchi K, Vandecasteele G, Carli C, Romagnoli A, Szabadkai G, Rizzuto R (2006) Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ 13(4):586–596. https://doi.org/10.1038/sj.cdd.4401784

    Article  CAS  PubMed  Google Scholar 

  75. Wu Y, O’Toole ET, Girard M, Ritter B, Messa M, Liu X, McPherson PS, Ferguson SM, et al (2014) A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. Elife 3:e01621. https://doi.org/10.7554/eLife.01621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Power JM, Sah P (2002) Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J Neurosci 22(9):3454–3462. https://doi.org/10.1523/JNEUROSCI.22-09-03454.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Franck Polleux (mito-GCaMP5G, mito-RCaMP1h, and vGlut1-GCaMP5G), Timothy Ryan (ER-GCaMP6-150), Masamitsu Iino (CEPIA3mt), Justin Taraska (VAMP2-pHuji), and Michael Davidson (DsRed2) for providing plasmids.

Funding

This work was supported by the Korean government (MSIT) (No. 2020R1C1C1008852) and the Korean Ministry of Environment under the ‘Environmental Health R&D Program’ (2021003310005).

Author information

Authors and Affiliations

Authors

Contributions

EK and SRK: Conceptualization, investigation, review, editing. YK: Investigation. SHL: Conceptualization, writing, supervision.

Corresponding author

Correspondence to Sung Hoon Lee.

Ethics declarations

Ethics Approval

All procedures with animals were performed according to the guidelines of the Animal Care and Use Committee at Chung-Ang University (Approval No. 2017–00093) and according to the National Institutes of Health Guidelines for Laboratory Animal Care.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 Supplementary Movie 1 (Relate to Figure 1 and Supplementary Figure 2). Mitochondrial Ca2+ waves after electrical stimulation. Pseudocolor time-lapse imaging of mito-GCaMP5G–expressing neurons in association with various levels of electrical stimulation. Depiction of ROIs along mito-GCaMP5G–expressing neuronal processes (red, green, and blue). (A) 200 APs at 40 Hz. Sequential increases in mitochondrial Ca2+ from red to blue (AVI 402 KB)

Supplementary file2 Supplementary Movie 1 (Relate to Figure 1 and Supplementary Figure 2). Mitochondrial Ca2+ waves after electrical stimulation. Pseudocolor time-lapse imaging of mito-GCaMP5G–expressing neurons in association with various levels of electrical stimulation. Depiction of ROIs along mito-GCaMP5G–expressing neuronal processes (red, green, and blue). (B) Similar to A with a higher temporal resolution (5 Hz) (AVI 180 KB)

Supplementary file3 Supplementary Movie 1 (Relate to Figure 1 and Supplementary Figure 2). Mitochondrial Ca2+ waves after electrical stimulation. Pseudocolor time-lapse imaging of mito-GCaMP5G–expressing neurons in association with various levels of electrical stimulation. Depiction of ROIs along mito-GCaMP5G–expressing neuronal processes (red, green, and blue). (C) 200 APs at 20 Hz. Sequential increases in mitochondrial Ca2+ from red to blue (AVI 206 KB)

Supplementary file4 Supplementary Movie 1 (Relate to Figure 1 and Supplementary Figure 2). Mitochondrial Ca2+ waves after electrical stimulation. Pseudocolor time-lapse imaging of mito-GCaMP5G–expressing neurons in association with various levels of electrical stimulation. Depiction of ROIs along mito-GCaMP5G–expressing neuronal processes (red, green, and blue). (D) 200 APs at 10 Hz. Simultaneous mitochondrial Ca2+ increases from red to blue (AVI 178 KB)

Supplementary file5 Supplementary Movie 1 (Relate to Figure 1 and Supplementary Figure 2). Mitochondrial Ca2+ waves after electrical stimulation. Pseudocolor time-lapse imaging of mito-GCaMP5G–expressing neurons in association with various levels of electrical stimulation. Depiction of ROIs along mito-GCaMP5G–expressing neuronal processes (red, green, and blue). (E) 40 APs at 40 Hz. Simultaneous mitochondrial Ca2+ increases from red to blue. (AVI 340 KB)

12035_2023_3795_MOESM6_ESM.tif

Supplementary file6 Supplementary Figure 1. Co-localization of GECIs of mitochondria with MitoTracker in hippocampal neurons. (A) Representative image of MitoTracker (red) and mito-GCaMP5G expression (green). (B) Representative image of mito-RCaMP1h expression (red) and MitoTracker (green). (C) Representative image of MitoTracker (red) and CEPIA3mt expression (green). (TIF 1938 KB)

12035_2023_3795_MOESM7_ESM.tif

Supplementary file7 Supplementary Figure 2. Mitochondrial Ca2+ waves with electrical stimulation at a higher temporal resolution. (A and B) Similar to Fig. 1A, B but with higher temporal resolution (5 Hz) (TIF 3540 KB)

12035_2023_3795_MOESM8_ESM.tif

Supplementary file8 Supplementary Figure 3 (Related to Figure 5). Effect of AMPAR and NMDAR inhibition on mitochondrial Ca2+ waves. Application of electrical stimulation in mito-GCaMP5G transfected neurons in the presence of CNQX and APV. (A) Representative images of ROIs showing significant mitochondrial Ca2+ increases in response to electrical stimulation (left) and quantification of positive ROIs (right). Blockade of AMPAR and NMDAR reduced the number of ROIs. n = 8 independent cultures for Veh, n = 5 independent cultures for CNQX and APV treatment. Data are presented as the mean ± SEM. *p < 0.05 compared with Veh. Mann-Whitney U test. (B) Averaged normalized traces for ROIs showing mitochondrial Ca2+ increase in response to electrical stimulation with or without CNQX and APV. The average peak amplitude of mitochondrial Ca2+ increased in response to electrical stimulation (200 APs at 40 Hz). n = 664 responses from 8 independent cultures for Veh, n = 282 responses from 5 independent cultures for CNQX and APV treatment. Data are presented as the mean ± SEM. *p < 0.05 and ***p < 0.001 compared to Veh. Mann-Whitney U test. (TIF 3907 KB)

12035_2023_3795_MOESM9_ESM.tif

Supplementary file9 Supplementary Figure 4. Intracellular Ca2+ changes associated with electrical stimulation. (A) Representative whole images of DsRed2-expressing and Fluo-4-AM–labeled neurons (left). The dashed box (white) was magnified, and the individual and merged images are shown (right). Depiction of ROIs along a single DsRed2-expressing neuronal process (crosses). (B) Normalized traces of ROIs from the Fluo-4-AM of panel A (left) and magnification of the dashed box (right). Simultaneous intracellular Ca2+ increases in all ROIs (TIF 3681 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, Y., Kim, S.R., Kim, YK. et al. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 61, 3477–3489 (2024). https://doi.org/10.1007/s12035-023-03795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03795-w

Keywords

Navigation