Skip to main content

Advertisement

Log in

Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract    

Harmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity. Here, we aim to explore the involvement of Kapβ2 in neurodegeneration in rats with MCI following sevoflurane anesthesia and surgery. Firstly, novel object recognition test and Barnes maze were conducted to assess behavioral performances, and we found Kapβ2 positively regulated the recovery of memory and cognitive function. In vivo electrophysiological experiments revealed that the hippocampal theta rhythm energy distribution was disrupted, coherence was reduced, and long-term potentiation was attenuated in MCI rats. LTP was greatly improved with positive modulation of Kapβ2. Next, functional MRI and BOLD imaging will be employed to examine the AFLL and FC values of dynamic connectivity between the cortex and hippocampus of the brain. The findings show that regulating Kapβ2 in the hippocampus region enhances functional activity and connections between brain regions in MCI rats. WB results showed that increasing Kapβ2 expression improved the expression and recovery of cognitive-related proteins in the hippocampus of MCI rats. Finally, WB and immunofluorescence were used to examine the changes in hnRNPA2/B1 expression in the nucleus and cytoplasm after overexpression of Kapβ2, and it was found that nucleocytoplasmic mis location was alleviated. Overall, these data show that Kapβ2 reverses the nucleoplasmic misalignment of hnRNPA2/B1, which slows neurodegeneration towards dementia in MCI after sevoflurane anesthesia and surgery. Our findings may lead to new approaches for perioperative neuroprotection of MCI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Petersen RC (2016) Mild cognitive impairment. CONTINUUM: Lifelong Learn Neurol 22:404–418

    Google Scholar 

  2. Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312:2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brodaty H, Connors MH, Ames D et al (2014) Progression from mild cognitive impairment to dementia: A 3-year longitudinal study. Aust N Z J Psychiatry 48:1137–1142

    Article  PubMed  Google Scholar 

  4. Meles SK, Pagani M, Arnaldi D et al (2017) The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment. J Cereb Blood Flow Metab 37:3643–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts RO, Knopman DS, Mielke MM et al (2014) Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology 82:317–325

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kandiah N, Chan YF, Chen C et al (2021) Strategies for the use of Ginkgo biloba extract, EGb 761 ®, in the treatment and management of mild cognitive impairment in Asia: Expert consensus. CNS Neurosci Ther 27:149–162

    Article  CAS  PubMed  Google Scholar 

  7. Thomas KR, Osuna JR, Weigand AJ et al (2021) Regional hyperperfusion in older adults with objectively-defined subtle cognitive decline. J Cereb Blood Flow Metab 41:1001–1012

    Article  CAS  PubMed  Google Scholar 

  8. Gao S, Unverzagt FW, Hall KS et al (2014) Mild cognitive impairment, incidence, progression, and reversion: findings from a community-based cohort of elderly african americans. Am J Geriatr Psychiatry 22:670–681

    Article  PubMed  Google Scholar 

  9. Pappa M, Theodosiadis N, Tsounis A, Sarafis P (2017) Pathogenesis and treatment of post-operative cognitive dysfunction. Electron Physician 9:3768–3775. https://doi.org/10.19082/3768

    Article  PubMed  PubMed Central  Google Scholar 

  10. Evered L, Silbert B, Knopman DS et al (2018) Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. Anesthesiology 129:872–879

    Article  CAS  PubMed  Google Scholar 

  11. Wan Y, Xu J, Ma D et al (2007) Postoperative impairment of cognitive function in rats. Anesthesiology 106:436–443

    Article  PubMed  Google Scholar 

  12. Monk TG, Weldon BC, Garvan CW et al (2008) Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108:18–30

    Article  PubMed  Google Scholar 

  13. Li K, Guo Z-W, Zhai X-M et al (2020) RBPTD: a database of cancer-related RNA-binding proteins in humans. Database 2020:baz156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolozin B, Ivanov P (2019) Stress granules and neurodegeneration. Nat Rev Neurosci 20:649–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Loïodice I, Alves A, Rabut G et al (2004) The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. MBoC 15:3333–3344

    Article  PubMed  PubMed Central  Google Scholar 

  16. Soniat M, Chook YM (2015) Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem J 468:353–362

    Article  CAS  PubMed  Google Scholar 

  17. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  Google Scholar 

  18. Xu D, Farmer A, Chook YM (2010) Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol 20:782–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee BJ, Cansizoglu AE, Süel KE et al (2006) Rules for nuclear localization sequence recognition by Karyopherinβ2. Cell 126:543–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Won J-S, Kim J, Annamalai B et al (2013) Protective role of S-Nitrosoglutathione (GSNO) against cognitive impairment in rat model of chronic cerebral hypoperfusion. JAD 34:621–635

    Article  CAS  PubMed  Google Scholar 

  21. Duan W, Chun-Qing Z, Zheng J et al (2011) Relief of carotid stenosis improves impaired cognition in a rat model of chronic cerebral hypoperfusion. Acta Neurobiol Exp (Wars) 71:233–243

    Article  PubMed  Google Scholar 

  22. Zhou Z, Zhang Y, Zhu C et al (2012) Cognitive functions of carotid artery stenosis in the aged rat. Neuroscience 219:137–144

    Article  CAS  PubMed  Google Scholar 

  23. Harry LE, Sandison A, Paleolog EM et al (2008) Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res 26:1238–1244

    Article  PubMed  Google Scholar 

  24. Bokil H, Andrews P, Kulkarni JE et al (2010) Chronux: a platform for analyzing neural signals. J Neurosci Methods 192:146–151

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yan C-G, Wang X-D, Zuo X-N, Zang Y-F (2016) DPABI: data processing & analysis for (Resting-State) brain imaging. Neuroinform 14:339–351

    Article  Google Scholar 

  26. Papazoglou A, Soos J, Lundt A et al (2016) Gender-specific hippocampal dysrhythmia and aberrant hippocampal and cortical excitability in the APPswePS1dE9 model of alzheimer’s disease. Neural Plast 2016:1–16

    Article  Google Scholar 

  27. Silbert B, Evered L, Scott DA (2011) Cognitive decline in the elderly: Is anaesthesia implicated? Best Pract Res Clin Anaesthesiol 25:379–393

    Article  PubMed  Google Scholar 

  28. Roberts R, Knopman DS (2013) Classification and epidemiology of MCI. Clin Geriatr Med 29:753–772

    Article  PubMed  Google Scholar 

  29. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang J, Yang C, Wang H et al (2020) A new rat model of chronic cerebral hypoperfusion resulting in early-stage vascular cognitive impairment. Front Aging Neurosci 12:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith I, Nathanson M, White PF (1996) Sevoflurane-a long-awaited volatile anaesthetic. Br J Anaesth 76:435–445

    Article  CAS  PubMed  Google Scholar 

  32. Culley DJ, Xie Z, Crosby G (2007) General anesthetic-induced neurotoxicity: an emerging problem for the young and old? Curr Opin Anaesthesiol 20:408–413

    Article  PubMed  Google Scholar 

  33. Satomoto M, Satoh Y, Terui K et al (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110:628–637

    Article  CAS  PubMed  Google Scholar 

  34. Shen X, Liu Y, Xu S et al (2013) Early life exposure to sevoflurane impairs adulthood spatial memory in the rat. Neurotoxicology 39:45–56

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Zhang L, Huang Q et al (2017) Monitoring the end-tidal concentration of sevoflurane for preventing awareness during anesthesia (MEETS-PANDA): A prospective clinical trial. Int J Surg 41:44–49

    Article  PubMed  Google Scholar 

  36. Logginidou HG, Li B-H, Li D-P et al (2003) Propofol suppresses the cortical somatosensory evoked potential in rats. Anesth Analg 97:1784–1788

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. JoVE 84:51194

    Google Scholar 

  38. Cohen SJ, Stackman RW Jr (2015) Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behav Brain Res 285:105–117

    Article  PubMed  Google Scholar 

  39. Perl DP (2010) Neuropathology of alzheimer’s disease: D. P. PERL: NEUROPATHOLOGY OF ALZHEIMER’S DISEASE. Mt Sinai J Med 77:32–42

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kylkilahti TM, Berends E, Ramos M et al (2021) Achieving brain clearance and preventing neurodegenerative diseases—A glymphatic perspective. J Cereb Blood Flow Metab 41:2137–2149

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun S, Zhou J, Li Z et al (2022) Progranulin promotes hippocampal neurogenesis and alleviates anxiety-like behavior and cognitive impairment in adult mice subjected to cerebral ischemia. CNS Neurosci Ther 28:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    Article  CAS  PubMed  Google Scholar 

  43. Suo Z, Yang J, Zhou B et al (2022) Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood–brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther 28:1576–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  Google Scholar 

  45. Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36:295–312

    Article  CAS  PubMed  Google Scholar 

  46. Tuesta LM, Zhang Y (2014) Mechanisms of epigenetic memory and addiction. EMBO J 33:1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Biswal B, ZerrinYetkin F, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  48. Pan P, Zhu L, Yu T et al (2017) Aberrant spontaneous low-frequency brain activity in amnestic mild cognitive impairment: A meta-analysis of resting-state fMRI studies. Ageing Res Rev 35:12–21

    Article  PubMed  Google Scholar 

  49. Tahmasian M, Eickhoff SB, Giehl K et al (2017) Resting-state functional reorganization in Parkinson’s disease: An activation likelihood estimation meta-analysis. Cortex 92:119–138

    Article  PubMed  PubMed Central  Google Scholar 

  50. Logothetis NK, Pauls J, Augath M et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  51. Yu-Feng Z, Yong H, Chao-Zhe Z et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Develop 29:83–91

    Article  Google Scholar 

  52. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  53. Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  54. Krecic AM, Swanson MS (1999) hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363–371

    Article  CAS  PubMed  Google Scholar 

  55. Ruan QT, Yazdani N, Beierle JA et al (2018) Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neurosci Lett 684:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao Y, Tatavarty V, Korza G et al (2008) Multiplexed dendritic targeting of α calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. MBoC 19:2311–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen SM, Suutari B, He X, Wang Y, Sanchez S, Tirko NN et al (2018) Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat Commun 9:2451

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nakamura TY, Nakao S, Nakajo Y, Takahashi JC, Wakabayashi S, Yanamoto H (2017) Possible signaling pathways mediating neuronal calcium sensor-1-dependent spatial learning and memory in mice. PLoS ONE 12:e0170829

    Article  PubMed  PubMed Central  Google Scholar 

  59. Raymundi AM, da Silva TR, Zampronio AR et al (2020) A time-dependent contribution of hippocampal CB1, CB2 and PPARγ receptors to cannabidiol-induced disruption of fear memory consolidation. Br J Pharmacol 177(4):945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Estañ MC, Fernández-Núñez E, Zaki MS et al (2019) Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 10:797

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li L, Yu J, Ji SJ (2021) Axonal mRNA localization and translation: local events with broad roles. Cell Mol Life Sci 78:7379–7395

    Article  CAS  PubMed  Google Scholar 

  62. Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679. https://doi.org/10.1016/j.tcb.2016.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo L, Kim HJ, Wang H et al (2018) Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173:677-692.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pak CW, Kosno M, Holehouse AS et al (2016) Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol Cell 63:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135:851–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim HJ, Kim NC, Wang Y-D et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xia T, Yang C, Wang X et al (2022) Heterogeneous nuclear ribonucleoprotein A2/B1 as a novel biomarker in elderly patients for the prediction of postoperative neurocognitive dysfunction: A prospective nested case-control study. Front Aging Neurosci 14:1034041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-Protein granules in degenerative disorders. Cell 154:727–736

    Article  CAS  PubMed  Google Scholar 

  71. Baradaran-Heravi Y, Van Broeckhoven C, van der Zee J (2020) Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol Dis 134:104639

    Article  CAS  PubMed  Google Scholar 

  72. Lu J, Cao Q, Hughes MP et al (2020) CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat Commun 11:4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express my gratitude to all these who helped us during the writing of this manuscript. Thanks to all the peer reviewers for their opinions and suggestions.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82071220, 82371205), Natural Science Foundation of Tianjin (20JCYBJC01290), and the Science and Technology Foundation of Tianjin Health Commission (MS20013), and Tianjin key Medical Discipline (Specialty) Construction Project (TJYXZDXK-072C), Tianjin Multiple Investment Foundation of Applied Basic Research (21JCQNJC01020), Tianjin Health Research Project (TJWJ2023XK019, TJWJ2023QN042).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: Miao Zhang, Haiyun Wang; study concepts: Miao Zhang, Haiyun Wang; study design: Miao Zhang; definition of intellectual content: Qiang Wang, Miao Zhang, Qingkai Tang; literature research: Feiyu Jia, Miao Zhang, Xinyi Wang; experimental studies: Feiyu Jia, Miao Zhang; data acquisition: Feiyu Jia, Miao Zhang, Tianyue Liu; data analysis: Miao Zhang, Qiang Wang; statistical analysis: Miao Zhang, Feiyu Jia, Chenyi Yang; manuscript preparation: Miao Zhang, Feiyu Jia, Qiang Wang; manuscript editing: Zhuo Yang; manuscript review: Haiyun Wang; All the authors approved for the final version.

Corresponding authors

Correspondence to Zhuo Yang or Haiyun Wang.

Ethics declarations

Ethics Approval

Tianjin Medical University's Institutional Animal Conservation and Utilization Committee reviewed the animal study and approved it.

Consent to Participate

Not applicable

Consent for Publication

Not Applicable

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Jia, F., Wang, Q. et al. Kapβ2 Inhibits Perioperative Neurocognitive Disorders in Rats with Mild Cognitive Impairment by Reversing the Nuclear-Cytoplasmic Mislocalization of hnRNPA2/B1. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03789-8

Keywords

Navigation