Skip to main content

Advertisement

Log in

STAT4-Mediated Klotho Up-Regulation Contributes to the Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning via Inhibiting Neuronal Pyroptosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt − 881 and – 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used in the present study are available from the corresponding author on reasonable request.

Abbreviations

AAV:

Adeno-associated virus

BCCAs:

Bilateral common carotid arteries

CIP:

Cerebral ischemic preconditioning

ND:

Neuronal density

DND:

Delayed neuronal death

d:

Day

GSDMD:

Gasdermin D

h:

Hour

II:

Ischemic insult

i.c.v. :

Intracerebroventricular

KL:

Klotho

min:

Minute

NC:

Negative control

NLRP3:

NOD-like receptor family pyrin domain containing 3

NS:

Statistically nonsignificant

STAT:

Signal transducer and activator of transcription

siRNA:

Small interfering RNA

References

  1. Zhang S, Xu M, Liu ZJ, Feng J, Ma Y (2020) Neuropsychiatric issues after stroke: Clinical significance and therapeutic implications. World J Psychiatry 10(6):125–138. https://doi.org/10.5498/wjp.v10.i6.125

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johnson W, Onuma O, Owolabi M, Sachdev S (2016) Stroke: a global response is needed. Bull World Health Organ 94(9):634-634A. https://doi.org/10.2471/BLT.16.181636

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7(6):437–448. https://doi.org/10.1038/nrn1927

    Article  CAS  PubMed  Google Scholar 

  4. Yin XH, Zhang QG, Miao B, Zhang GY (2005) Neuroprotective effects of preconditioning ischaemia on ischaemic brain injury through inhibition of mixed-lineage kinase 3 via NMDA receptor-mediated Akt1 activation. J Neurochem 93(4):1021–1029. https://doi.org/10.1111/j.1471-4159.2005.03096.x

    Article  CAS  PubMed  Google Scholar 

  5. Steiger HJ, Hanggi D (2007) Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir 149(1):1–10. https://doi.org/10.1007/s00701-006-1057-1. (Wien)

    Article  PubMed  Google Scholar 

  6. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  7. Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E (2016) Klotho Is a Neuroprotective and Cognition-Enhancing Protein. Vitam Horm 101:215–238. https://doi.org/10.1016/bs.vh.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  8. Zhou HJ, Li H, Shi MQ, Mao XN, Liu DL, Chang YR, Gan YM, Kuang X et al (2017) Protective Effect of Klotho against Ischemic Brain Injury Is Associated with Inhibition of RIG-I/NF-kappaB Signaling. Front Pharmacol 8:950. https://doi.org/10.3389/fphar.2017.00950

    Article  CAS  PubMed  Google Scholar 

  9. Long FY, Shi MQ, Zhou HJ, Liu DL, Sang N, Du JR (2018) Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice. Eur J Pharmacol 820:198–205. https://doi.org/10.1016/j.ejphar.2017.12.019

    Article  CAS  PubMed  Google Scholar 

  10. Lee JB, Woo HG, Chang Y, Jin YM, Jo I, Kim J, Song TJ (2019) Plasma Klotho concentrations predict functional outcome at three months after acute ischemic stroke patients. Ann Med 51(3–4):262–269. https://doi.org/10.1080/07853890.2019.1617434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karizmeh MS, Shabani M, Shabani M, Sardari M, Babaei JF, Nabavizadeh F, Sadr SS, Adeli S (2022) Preconditioning exercise reduces hippocampal neuronal damage via increasing Klotho expression in ischemic rats. Brain Res Bull 188:133–142. https://doi.org/10.1016/j.brainresbull.2022.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Jin Z, Zhang Z, Ke J, Wang Y, Wu H (2021) Exercise-Linked Irisin Prevents Mortality and Enhances Cognition in a Mice Model of Cerebral Ischemia by Regulating Klotho Expression. Oxid Med Cell Longev 2021:1697070. https://doi.org/10.1155/2021/1697070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Herr DR, Yam TYA, Tan WSD, Koh SS, Wong WSF, Ong WY, Chayaburakul K (2020) Ultrastructural Characteristics of DHA-Induced Pyroptosis. Neuromolecular Med 22(2):293–303. https://doi.org/10.1007/s12017-019-08586-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gou X, Xu D, Li F, Hou K, Fang W, Li Y (2021) Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies. J Physiol Biochem 77(4):511–529. https://doi.org/10.1007/s13105-021-00817-w

    Article  CAS  PubMed  Google Scholar 

  15. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671. https://doi.org/10.1038/nature15541

    Article  CAS  PubMed  Google Scholar 

  16. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16(7):407–420. https://doi.org/10.1038/nri.2016.58

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Yuan YH, Chen NH, Wang HB (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 67:458–464. https://doi.org/10.1016/j.intimp.2018.12.019

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158. https://doi.org/10.1038/nature18629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Vasconcelos NM, Lamkanfi M (2020) Recent Insights on Inflammasomes, Gasdermin Pores, and Pyroptosis. Cold Spring Harb Perspect Biol 12(5). https://doi.org/10.1101/cshperspect.a036392

  20. An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L, Tang M (2019) Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci 232:116599. https://doi.org/10.1016/j.lfs.2019.116599

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, He J, Huang Y, Ge L, Xiao H, Zeng L, Jiang Z, Lu M et al (2021) Hypoxia-preconditioned mesenchymal stem cells attenuate microglial pyroptosis after intracerebral hemorrhage. Ann Transl Med 9(17):1362. https://doi.org/10.21037/atm-21-2590

  22. Liu H, Zhao Z, Wu T, Zhang Q, Lu F, Gu J, Jiang T, Xue J (2021) Inhibition of autophagy-dependent pyroptosis attenuates cerebral ischaemia/reperfusion injury. J Cell Mol Med 25(11):5060–5069. https://doi.org/10.1111/jcmm.16483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhong Y, Li YP, Yin YQ, Hu BL, Gao H (2020) Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol 86:106768. https://doi.org/10.1016/j.intimp.2020.106768

    Article  CAS  PubMed  Google Scholar 

  24. She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X (2019) Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 242:112051. https://doi.org/10.1016/j.jep.2019.112051

    Article  CAS  PubMed  Google Scholar 

  25. Nie C, Ding X, Rong A, Zheng M, Li Z, Pan S, Yang W (2021) Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats. Life Sci 272:119248. https://doi.org/10.1016/j.lfs.2021.119248

  26. Cao X, Wang Y, Gao L (2021) CHRFAM7A Overexpression Attenuates Cerebral Ischemia-Reperfusion Injury via Inhibiting Microglia Pyroptosis Mediated by the NLRP3/Caspase-1 pathway. Inflammation 44(3):1023–1034. https://doi.org/10.1007/s10753-020-01398-4

    Article  CAS  PubMed  Google Scholar 

  27. Sun R, Peng M, Xu P, Huang F, Xie Y, Li J, Hong Y, Guo H et al (2020) Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury. J Neuroinflammation 17(1):330. https://doi.org/10.1186/s12974-020-01988-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang Y, Zhu J, Wang D, Li H, He Y, Liu K, Wang X, Peng Y et al (2020) NLRP3 inflammasome-mediated microglial pyroptosis is critically involved in the development of post-cardiac arrest brain injury. J Neuroinflammation 17(1):219. https://doi.org/10.1186/s12974-020-01879-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu X, Li S, Lin Q, Shao X, Wu J, Zhang W, Cai H, Zhou W et al (2021) alphaKlotho protein has therapeutic activity in contrast-induced acute kidney injury by limiting NLRP3 inflammasome-mediated pyroptosis and promoting autophagy. Pharmacol Res 167:105531. https://doi.org/10.1016/j.phrs.2021.105531

    Article  CAS  PubMed  Google Scholar 

  30. Zhang LY, Liu XY, Su AC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M (2022) Klotho Upregulation via PPARgamma Contributes to the Induction of Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning in Rats. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01255-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Darnell JE Jr (1997) STATs and gene regulation. Science 277(5332):1630–1635. https://doi.org/10.1126/science.277.5332.1630

    Article  CAS  PubMed  Google Scholar 

  32. Bromberg J, Darnell J (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19(21):2468–2473. https://doi.org/10.1038/sj.onc.1203476

    Article  CAS  PubMed  Google Scholar 

  33. Mehrpouya-Bahrami P, Moriarty AK, De Melo P, Keeter WC, Alakhras NS, Nelson AS, Hoover M, Barrios MS et al (2021) STAT4 is expressed in neutrophils and promotes antimicrobial immunity. JCI Insight 6(14). https://doi.org/10.1172/jci.insight.141326

  34. Jiang Y, Xin X, Pan X, Zhang A, Zhang Z, Li J, Yuan X (2020) STAT4 targets KISS1 to promote the apoptosis of ovarian granulosa cells. J Ovarian Res 13(1):135. https://doi.org/10.1186/s13048-020-00741-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10(3):267–272. https://doi.org/10.1161/01.str.10.3.267

    Article  CAS  PubMed  Google Scholar 

  36. Zhang M, Gong J, Wang J, Li W (2017) p38 MAPK Participates in the Mediation ofGLT-1 Up-regulation During the Induction of Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning. https://doi.org/10.1007/s12035-015-9652-x

  37. Liu Y-X, Zhang M, Liu L-Z, Cui X, Hu Y-Y, Li W-B (2012) The role of glutamate transporter-1a in the induction of brain ischemic tolerance in rats. Glia 60(1):112–124. https://doi.org/10.1002/glia.21252

    Article  PubMed  Google Scholar 

  38. Su AC, Zhang LY, Zhang JG, Hu YY, Liu XY, Li SC, Xian XH, Li WB et al (2022) The Regulation of Autophagy by p38 MAPK-PPARgamma Signaling During the Brain Ischemic Tolerance Induced by Cerebral Ischemic Preconditioning. DNA Cell Biol 41(9):838–849. https://doi.org/10.1089/dna.2022.0087

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Li WB, Geng JX, Li QJ, Sun XC, Xian XH, Qi J, Li SQ (2007) The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J Cereb Blood Flow Metab 27(7):1352–1368. https://doi.org/10.1038/sj.jcbfm.9600441

    Article  CAS  PubMed  Google Scholar 

  40. Dong Z, Pan K, Pan J, Peng Q, Wang Y (2018) The Possibility and Molecular Mechanisms of Cell Pyroptosis After Cerebral Ischemia. Neurosci Bull 34(6):1131–1136. https://doi.org/10.1007/s12264-018-0294-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ismael S, Zhao L, Nasoohi S, Ishrat T (2018) Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci Rep 8(1):5971. https://doi.org/10.1038/s41598-018-24350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019) NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 14(6):574–591. https://doi.org/10.1177/1747493019841242

    Article  PubMed  Google Scholar 

  43. Lorenz G, Darisipudi MN, Anders HJ (2014) Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant 29(1):41–48. https://doi.org/10.1093/ndt/gft332

    Article  CAS  PubMed  Google Scholar 

  44. Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L et al (2020) Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-kappaB Pathway. Front Neurosci 14:848. https://doi.org/10.3389/fnins.2020.00848

    Article  PubMed  PubMed Central  Google Scholar 

  45. Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, Dheen ST, Magnus T et al (2019) Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun 75:34–47. https://doi.org/10.1016/j.bbi.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Hao JH, Yao D, Li R, Li XF, Yu ZY, Luo X, Liu XH et al (2020) Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci Ther 26(9):925–939. https://doi.org/10.1111/cns.13384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv Y, Sun B, Lu XX, Liu YL, Li M, Xu LX, Feng CX, Ding X et al (2020) The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage. Biochem Biophys Res Commun 521(4):933–938. https://doi.org/10.1016/j.bbrc.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  48. Yang KL, Li WH, Liu YJ, Wei YJ, Ren YK, Mai CD, Zhang SY, Zuo Y et al (2022) Hydrogen Sulfide Attenuates Neuroinflammation by Inhibiting the NLRP3/Caspase-1/GSDMD Pathway in Retina or Brain Neuron following Rat Ischemia/Reperfusion. Brain Sci 12(9). https://doi.org/10.3390/brainsci12091245

  49. Lu D, Hu M, Zhang B, Lin Y, Zhu Q, Men X, Lu Z, Cai W (2021) Temporal and Spatial Dynamics of Inflammasome Activation After Ischemic Stroke. Front Neurol 12:621555. https://doi.org/10.3389/fneur.2021.621555

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kang X, Jiang L, Chen X, Wang X, Gu S, Wang J, Zhu Y, Xie X et al (2021) Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis. Exp Cell Res 405(1):112635. https://doi.org/10.1016/j.yexcr.2021.112635

    Article  CAS  PubMed  Google Scholar 

  51. Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H et al (2022) NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia-Reperfusion Injury. Front Mol Neurosci 15:847440. https://doi.org/10.3389/fnmol.2022.847440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiang T, Luo X, Ye L, Huang H, Wu Y (2022) Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav 128:108509. https://doi.org/10.1016/j.yebeh.2021.108509

    Article  PubMed  Google Scholar 

  53. Zhua L, Steina LR, Kima D, Hoa K, Yua G-Q, Zhana L, Larssonb TE, Muckea L (2018) Klotho controls the brain–immune system interface in the choroid plexus. Proc Natl Acad Sci USA 115(48):E11388–E11396. https://doi.org/10.1073/pnas.1808609115

    Article  CAS  Google Scholar 

  54. Li Y, Liu Y, Wang K, Huang Y, Han W, Xiong J, Yang K, Liu M et al (2020) Klotho is regulated by transcription factor Sp1 in renal tubular epithelial cells. BMC Mol Cell Biol 21(1):45. https://doi.org/10.1186/s12860-020-00292-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Liu Y, Huang Y, Yang K, Xiao T, Xiong J, Wang K, Liu C et al (2020) IRF-1 promotes renal fibrosis by downregulation of Klotho. FASEB J 34(3):4415–4429. https://doi.org/10.1096/fj.201902446R

    Article  CAS  PubMed  Google Scholar 

  56. Li M, Liu Y, Fu Y, Gong R, Xia H, Huang X, Wu Y (2021) Interleukin-35 inhibits lipopolysaccharide-induced endothelial cell activation by downregulating inflammation and apoptosis. Exp Cell Res 407(2):112784. https://doi.org/10.1016/j.yexcr.2021.112784

    Article  CAS  PubMed  Google Scholar 

  57. He M, Li M, Guo Z (2022) STAT4 regulates cardiomyocyte apoptosis in rat models of diabetic cardiomyopathy. Acta Histochem 124(4):151872. https://doi.org/10.1016/j.acthis.2022.151872

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chenguang Zhao for her linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by the Natural Science Foundation of Hebei Province (Nos. H2021206160 and H2022206579) and the National Natural Science Foundation of China (No. 81971228).

Author information

Authors and Affiliations

Authors

Contributions

Xi-Yun Liu and Ling-Yan Zhang performed experiments. Xi-Yun Liu, Shi-chao Li, and Xiao-Yu Wang analyzed data and drafted the manuscript. Yu-Yan Hu and Xiao-Hui Xian drafted the figures. Min Zhang, Jing-Ge Zhang, and Wen-Bin Li designed the study and contributed to editing the final draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Ethics Approval

All animals in this study were approved by the Laboratory Animal Ethical and Welfare Committee of Hebei Medical University, China (Approval No. IACUC-Hebmu–2020013).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2376 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Zhang, LY., Wang, XY. et al. STAT4-Mediated Klotho Up-Regulation Contributes to the Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning via Inhibiting Neuronal Pyroptosis. Mol Neurobiol 61, 2336–2356 (2024). https://doi.org/10.1007/s12035-023-03703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03703-2

Keywords

Navigation