Skip to main content

Advertisement

Log in

Prokineticin-2 Participates in Chronic Constriction Injury-Triggered Neuropathic Pain and Anxiety via Regulated by NF-κB in Nucleus Accumbens Shell in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuropathic pain (NP) is an intractable pain that results from primary nervous system injury and dysfunction. Herein, we demonstrated in animal models that peripheral nerve injury induced enhanced pain perception and anxiety-like behaviors. According to previous reports, nucleus accumbens (NAc) shell is required for complete expression of neuropathic pain behaviors and mood alternations, we found the elevated mRNA and protein level of Prokineticin-2 (Prok2) in the NAc shell after Chronic Constriction Injury (CCI). Prok2 knockdown in the NAc shell reversed NP and anxiety-like behaviors in rats, indicating that Prok2 might play a fundamental role in NP and anxiety co-morbidity. CCI significantly enhanced Prok2 co-expression with NF-κB P-p65 in comparison with control animals. In addition to reversing the established nociceptive hypersensitivities and anxiety simultaneously, NAc microinjection of NF-κB siRNA or specific inhibitor PDTC reversed Prok2 upregulation. Besides, Prok2 was significantly decreased in vitro when co-transfected with si-NF-κB. Dual-Luciferase assay showed NF-κB directly activated Prok2 gene transcriptional activity. Overall, these findings provide new insights into the neurobiological mechanisms behind NP and comorbid anxiety. The NF-κB/Prok2 pathway could be a potential therapeutic target for NP and anxiety disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that all the data and materials contained within the manuscript are available. Supplementary Material can be found on the official website.

References

  1. Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353(9168):1959–1964. https://doi.org/10.1016/S0140-6736(99)01307-0

    Article  CAS  PubMed  Google Scholar 

  2. Kocot-Kepska M, Zajaczkowska R, Mika J, Kopsky DJ, Wordliczek J, Dobrogowski J, Przeklasa-Muszynska A (2021) Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 13(4):450. https://doi.org/10.3390/pharmaceutics13040450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller LR, Cano A (2009) Comorbid chronic pain and depression: who is at risk? J Pain 10(6):619–627. https://doi.org/10.1016/j.jpain.2008.12.007

    Article  PubMed  Google Scholar 

  4. Radat F, Margot-Duclot A, Attal N (2013) Psychiatric co-morbidities in patients with chronic peripheral neuropathic pain: a multicentre cohort study. Eur J Pain 17(10):1547–1557. https://doi.org/10.1002/j.1532-2149.2013.00334.x

    Article  CAS  PubMed  Google Scholar 

  5. Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482(7383):85–88. https://doi.org/10.1038/nature10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Di Lio A, Benke D, Besson M, Desmeules J, Daali Y, Wang ZJ, Edwankar R, Cook JM, Zeilhofer HU (2011) HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain. Neuropharmacology 60(4):626–632. https://doi.org/10.1016/j.neuropharm.2010.11.026

    Article  CAS  PubMed  Google Scholar 

  7. Comte M, Schon D, Coull JT, Reynaud E, Khalfa S, Belzeaux R, Ibrahim EC, Guedj E et al (2016) Dissociating Bottom-Up and Top-Down Mechanisms in the Cortico-Limbic System during Emotion Processing. Cereb Cortex 26(1):144–155. https://doi.org/10.1093/cercor/bhu185

    Article  PubMed  Google Scholar 

  8. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J, Kim SY, Adhikari A et al (2013) Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493(7433):537–541. https://doi.org/10.1038/nature11740

    Article  CAS  PubMed  Google Scholar 

  9. Vecchio D, Piras F, Piras F, Banaj N, Janiri D, Simonetti A, Sani G, Spalletta G (2020) Lithium treatment impacts nucleus accumbens shape in bipolar disorder. Neuroimage Clin 25:102167. https://doi.org/10.1016/j.nicl.2020.102167

    Article  PubMed  PubMed Central  Google Scholar 

  10. Guo L, Zhu Z, Wang G, Cui S, Shen M, Song Z, Wang JH (2020) microRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens. J Biol Chem 295(20):6831–6848. https://doi.org/10.1074/jbc.RA119.012047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X, Kondapalli J, Apkarian AV et al (2016) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19(2):220–222. https://doi.org/10.1038/nn.4199

    Article  CAS  PubMed  Google Scholar 

  12. Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303(5666):2040–2042. https://doi.org/10.1126/science.1093360

    Article  CAS  PubMed  Google Scholar 

  13. Christoffel DJ, Golden SA, Heshmati M, Graham A, Birnbaum S, Neve RL, Hodes GE, Russo SJ (2012) Effects of inhibitor of kappaB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology 37(12):2615–2623. https://doi.org/10.1038/npp.2012.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng MY, Leslie FM, Zhou QY (2006) Expression of prokineticins and their receptors in the adult mouse brain. J Comp Neurol 498(6):796–809. https://doi.org/10.1002/cne.21087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Negri L, Ferrara N (2018) The Prokineticins: Neuromodulators and Mediators of Inflammation and Myeloid Cell-Dependent Angiogenesis. Physiol Rev 98(2):1055–1082. https://doi.org/10.1152/physrev.00012.2017

    Article  CAS  PubMed  Google Scholar 

  16. Negri L, Lattanzi R, Giannini E, Colucci M, Margheriti F, Melchiorri P, Vellani V, Tian H et al (2006) Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J Neurosci 26(25):6716–6727. https://doi.org/10.1523/JNEUROSCI.5403-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JD, Hu WP, Zhou QY (2009) Disruption of the circadian output molecule prokineticin 2 results in anxiolytic and antidepressant-like effects in mice. Neuropsychopharmacology 34(2):367–373. https://doi.org/10.1038/npp.2008.61

    Article  CAS  PubMed  Google Scholar 

  18. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941. https://doi.org/10.1038/nature00965

    Article  CAS  PubMed  Google Scholar 

  19. Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG, Jilek A, Siegel JM, Zhou QY (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26(45):11615–11623. https://doi.org/10.1523/JNEUROSCI.3679-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2(10):725–734. https://doi.org/10.1038/nri910

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt C, Peng B, Li Z, Sclabas GM, Fujioka S, Niu J, Schmidt-Supprian M, Evans DB et al (2003) Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol Cell 12(5):1287–1300. https://doi.org/10.1016/s1097-2765(03)00390-3

    Article  CAS  PubMed  Google Scholar 

  22. Murase T, Kume N, Hase T, Shibuya Y, Nishizawa Y, Tokimitsu I, Kita T (1999) Gallates inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of leukocyte adhesion molecules in vascular endothelial cells. Arterioscler Thromb Vasc Biol 19(6):1412–1420. https://doi.org/10.1161/01.atv.19.6.1412

    Article  CAS  PubMed  Google Scholar 

  23. Du J, Romano RA, Si H, Mattox A, Bian Y, Yang X, Sinha S, Van Waes C et al (2014) Epidermal overexpression of transgenic DeltaNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-kappaB activation. J Pathol 232(3):356–368. https://doi.org/10.1002/path.4302

    Article  CAS  PubMed  Google Scholar 

  24. Lee S, Shin HJ, Noh C, Kim SI, Ko YK, Lee SY, Lim C, Hong B et al (2021) IKBKB siRNA-Encapsulated Poly (Lactic-co-Glycolic Acid) Nanoparticles Diminish Neuropathic Pain by Inhibiting Microglial Activation. Int J Mol Sci 22(11):5657. https://doi.org/10.3390/ijms22115657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen SH, Huang TC, Wang JY, Wu CC, Hsueh YY (2020) Controllable forces for reproducible chronic constriction injury mimicking compressive neuropathy in rat sciatic nerve. J Neurosci Methods 335:108615. https://doi.org/10.1016/j.jneumeth.2020.108615

    Article  PubMed  Google Scholar 

  26. Zhao JY, Liang L, Gu X, Li Z, Wu S, Sun L, Atianjoh FE, Feng J et al (2017) DNA methyltransferase DNMT3a contributes to neuropathic pain by repressing Kcna2 in primary afferent neurons. Nat Commun 8:14712. https://doi.org/10.1038/ncomms14712

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li N, Song Y, Zhao W, Han T, Lin S, Ramirez O, Liang L (2016) Small interfering RNA targeting NF-kappaB attenuates lipopolysaccharide-induced acute lung injury in rats. BMC Physiol 16(1):7. https://doi.org/10.1186/s12899-016-0027-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li HN, Yang QQ, Wang WT, Tian X, Feng F, Zhang ST, Xia YT, Wang JX et al (2021) Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-alpha through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation 18(1):150. https://doi.org/10.1186/s12974-021-02198-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Q, Yu J, Wang J, Ding CP, Han SP, Zeng XY, Wang JY (2015) The Red Nucleus TNF-alpha Participates in the Initiation and Maintenance of Neuropathic Pain Through Different Signaling Pathways. Neurochem Res 40(7):1360–1371. https://doi.org/10.1007/s11064-015-1599-9

    Article  CAS  PubMed  Google Scholar 

  30. Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, Wang W, Guan X et al (2013) A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 16(8):1024–1031. https://doi.org/10.1038/nn.3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu W, Zheng Z, Wei W, Li L, Zhang Y, Sun Y, Cao J, Zang W, Shao J (2021) Raf1 interacts with OIP5 to participate in oxaliplatin-induced neuropathic pain. Life Sci 281:119804. https://doi.org/10.1016/j.lfs.2021.119804

    Article  CAS  PubMed  Google Scholar 

  32. Wen J, Xu Y, Yu Z, Zhou Y, Wang W, Yang J, Wang Y, Bai Q, Li Z (2022) The cAMP Response Element- Binding Protein/Brain-Derived Neurotrophic Factor Pathway in Anterior Cingulate Cortex Regulates Neuropathic Pain and Anxiodepression Like Behaviors in Rats. Front Mol Neurosci 15:831151. https://doi.org/10.3389/fnmol.2022.831151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63. https://doi.org/10.1016/0165-0270(94)90144-9

    Article  CAS  PubMed  Google Scholar 

  34. Abderrahim L, Hicham EM, Aboubaker E, Fatima A, Tarik T, Soufiane B, Abdelhalim M (2022) Sex differences in behavioral, cognitive and voluntary ethanol-intake effects in Dexamethasone-induced depression-like state in Wistar rat. AIMS Neurosci 9(2):228–249. https://doi.org/10.3934/Neuroscience.2022012

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohammed HS, Khadrawy YA, El-Sherbini TM, Amer HM (2019) Electrocortical and Biochemical Evaluation of Antidepressant Efficacy of Formulated Nanocurcumin. Appl Biochem Biotechnol 187(3):1096–1112. https://doi.org/10.1007/s12010-018-2866-4

    Article  CAS  PubMed  Google Scholar 

  36. Caspani O, Reitz MC, Ceci A, Kremer A, Treede RD (2014) Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacol Biochem Behav 124:290–296. https://doi.org/10.1016/j.pbb.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  37. Gustin SM, Wrigley PJ, Youssef AM, McIndoe L, Wilcox SL, Rae CD, Edden RAE, Siddall PJ et al (2014) Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155(5):1027–1036. https://doi.org/10.1016/j.pain.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duric V, McCarson KE (2007) Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain 3:32. https://doi.org/10.1186/1744-8069-3-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu X, Hou Z, Han M, Chen K, Wang Y, Qing J, Yang F (2022) Salvianolic acid B alleviates comorbid pain in depression induced by chronic restraint stress through inhibiting GABAergic neuron excitation via an ERK-CREB-BDNF axis-dependent mechanism. J Psychiatr Res 151:205–216. https://doi.org/10.1016/j.jpsychires.2022.04.014

    Article  PubMed  Google Scholar 

  40. Ren W, Centeno MV, Wei X, Wickersham I, Martina M, Apkarian AV, Surmeier DJ (2021) Adaptive alterations in the mesoaccumbal network after peripheral nerve injury. Pain 162(3):895–906. https://doi.org/10.1097/j.pain.0000000000002092

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mai HN, Chung YH, Shin EJ, Kim DJ, Sharma N, Lee YJ, Jeong JH, Nah SY et al (2019) Glutathione peroxidase-1 overexpressing transgenic mice are protected from cocaine-induced drug dependence. Neurochem Int 124:264–273. https://doi.org/10.1016/j.neuint.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  42. Pontoriero M, Fiume G, Vecchio E, de Laurentiis A, Albano F, Iaccino E, Mimmi S, Pisano A et al (2019) Activation of NF-kappaB in B cell receptor signaling through Bruton’s tyrosine kinase-dependent phosphorylation of IkappaB-alpha. J Mol Med (Berl) 97(5):675–690. https://doi.org/10.1007/s00109-019-01777-x

    Article  CAS  PubMed  Google Scholar 

  43. Gao YJ, Ji RR (2010) Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7(4):482–493. https://doi.org/10.1016/j.nurt.2010.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong T, Zhang Y, Guo Q, Yang Y, Yan J, Dai R, Wu H (2015) Parental Neuropathic Pain Influences Emotion-Related Behavior in Offspring Through Maternal Feeding Associated with DNA Methylation of Amygdale in Rats. Neurochem Res 40(6):1179–1187. https://doi.org/10.1007/s11064-015-1578-1

    Article  CAS  PubMed  Google Scholar 

  45. McWilliams LA, Goodwin RD, Cox BJ (2004) Depression and anxiety associated with three pain conditions: results from a nationally representative sample. Pain 111(1–2):77–83. https://doi.org/10.1016/j.pain.2004.06.002

    Article  PubMed  Google Scholar 

  46. Kremer M, Becker LJ, Barrot M, Yalcin I (2021) How to study anxiety and depression in rodent models of chronic pain? Eur J Neurosci 53(1):236–270. https://doi.org/10.1111/ejn.14686

    Article  CAS  PubMed  Google Scholar 

  47. Attal N, Jazat F, Kayser V, Guilbaud G (1990) Further evidence for “pain-related” behaviours in a model of unilateral peripheral mononeuropathy. Pain 41(2):235–251. https://doi.org/10.1016/0304-3959(90)90022-6

    Article  CAS  PubMed  Google Scholar 

  48. Dowdall T, Robinson I, Meert TF (2005) Comparison of five different rat models of peripheral nerve injury. Pharmacol Biochem Behav 80(1):93–108. https://doi.org/10.1016/j.pbb.2004.10.016

    Article  PubMed  Google Scholar 

  49. Murasawa H, Kobayashi H, Saeki K, Kitano Y (2020) Anxiolytic effects of the novel alpha2delta ligand mirogabalin in a rat model of chronic constriction injury, an experimental model of neuropathic pain. Psychopharmacology 237(1):189–197. https://doi.org/10.1007/s00213-019-05356-3

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Yue N, Liu SB, Wang ZF, Mi WL, Jiang JW, Wu GC, Yu J, et al. (2014) Effects of chronic electroacupuncture on depression- and anxiety-like behaviors in rats with chronic neuropathic pain. Evid Based Complement Alternat Med 2014:158987. https://doi.org/10.1155/2014/158987

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramjeeawon A, Choy E (2019) Neuropathic-like pain in psoriatic arthritis: evidence of abnormal pain processing. Clin Rheumatol 38(11):3153–3159. https://doi.org/10.1007/s10067-019-04656-5

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gormsen L, Rosenberg R, Bach FW, Jensen TS (2010) Depression, anxiety, health-related quality of life and pain in patients with chronic fibromyalgia and neuropathic pain. Eur J Pain 14(2):127 e121-128. https://doi.org/10.1016/j.ejpain.2009.03.010

    Article  Google Scholar 

  53. Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47(3):987–994. https://doi.org/10.1016/j.neuroimage.2009.05.059

    Article  PubMed  Google Scholar 

  54. Liu Z, Le Q, Lv Y, Chen X, Cui J, Zhou Y, Cheng D, Ma C et al (2022) A distinct D1-MSN subpopulation down-regulates dopamine to promote negative emotional state. Cell Res 32(2):139–156. https://doi.org/10.1038/s41422-021-00588-5

    Article  CAS  PubMed  Google Scholar 

  55. Hara Y, Yakovleva T, Bakalkin G, Pickel VM (2006) Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 60(1):1–19. https://doi.org/10.1002/syn.20273

    Article  CAS  PubMed  Google Scholar 

  56. Kato T, Ide S, Minami M (2016) Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain. Neurosci Lett 629:73–78. https://doi.org/10.1016/j.neulet.2016.06.060

    Article  CAS  PubMed  Google Scholar 

  57. Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J (2018) Inhibition of the Prefrontal Projection to the Nucleus Accumbens Enhances Pain Sensitivity and Affect. Front Cell Neurosci 12:240. https://doi.org/10.3389/fncel.2018.00240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Descalzi G, Mitsi V, Purushothaman I, Gaspari S, Avrampou K, Loh YE, Shen L, Zachariou V (2017) Neuropathic pain promotes adaptive changes in gene expression in brain networks involved in stress and depression. Sci Signal 10(471). https://doi.org/10.1126/scisignal.aaj1549

  59. Kami K, Tajima F, Senba E (2022) Brain Mechanisms of Exercise-Induced Hypoalgesia: To Find a Way Out from “Fear-Avoidance Belief.” Int J Mol Sci 23(5):2886. https://doi.org/10.3390/ijms23052886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee M, Manders TR, Eberle SE, Su C, D’Amour J, Yang R, Lin HY, Deisseroth K et al (2015) Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci 35(13):5247–5259. https://doi.org/10.1523/JNEUROSCI.3494-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang H, Qian YL, Li C, Liu D, Wang L, Wang XY, Liu MJ, Liu H et al (2017) Brain-Derived Neurotrophic Factor in the Mesolimbic Reward Circuitry Mediates Nociception in Chronic Neuropathic Pain. Biol Psychiatry 82(8):608–618. https://doi.org/10.1016/j.biopsych.2017.02.1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zinsmaier AK, Dong Y, Huang YH (2022) Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol Psychiatry 27(1):669–686. https://doi.org/10.1038/s41380-021-01112-2

    Article  CAS  PubMed  Google Scholar 

  63. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368. https://doi.org/10.1038/nn1992

    Article  CAS  PubMed  Google Scholar 

  64. Lattanzi R, Maftei D, Marconi V, Florenzano F, Franchi S, Borsani E, Rodella LF, Balboni G, Salvadori S, Sacerdote P, Negri L (2015) Prokineticin 2 upregulation in the peripheral nervous system has a major role in triggering and maintaining neuropathic pain in the chronic constriction injury model. Biomed Res Int 2015:301292. https://doi.org/10.1155/2015/301292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Felice M, Melchiorri P, Ossipov MH, Vanderah TW, Porreca F, Negri L (2012) Mechanisms of Bv8-induced biphasic hyperalgesia: increased excitatory transmitter release and expression. Neurosci Lett 521(1):40–45. https://doi.org/10.1016/j.neulet.2012.05.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaseghi S, Zarrabian S, Haghparast A (2022) Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 133:104516. https://doi.org/10.1016/j.neubiorev.2021.104516

    Article  PubMed  Google Scholar 

  67. Luo ZY, Huang L, Lin S, Yin YN, Jie W, Hu NY, Hu YY, Guan YF et al (2020) Erbin in Amygdala Parvalbumin-Positive Neurons Modulates Anxiety-like Behaviors. Biol Psychiatry 87(10):926–936. https://doi.org/10.1016/j.biopsych.2019.10.021

    Article  CAS  PubMed  Google Scholar 

  68. Bao Z, Liu Y, Chen B, Miao Z, Tu Y, Li C, Chao H, Ye Y et al (2021) Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nat Commun 12(1):4220. https://doi.org/10.1038/s41467-021-24469-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beale K, Gardiner JV, Bewick GA, Hostomska K, Patel NA, Hussain SS, Jayasena CN, Ebling FJ et al (2013) Peripheral administration of prokineticin 2 potently reduces food intake and body weight in mice via the brainstem. Br J Pharmacol 168(2):403–410. https://doi.org/10.1111/j.1476-5381.2012.02191.x

    Article  CAS  PubMed  Google Scholar 

  70. Melchiorri D, Bruno V, Besong G, Ngomba RT, Cuomo L, De Blasi A, Copani A, Moschella C et al (2001) The mammalian homologue of the novel peptide Bv8 is expressed in the central nervous system and supports neuronal survival by activating the MAP kinase/PI-3-kinase pathways. Eur J Neurosci 13(9):1694–1702. https://doi.org/10.1046/j.1460-9568.2001.01549.x

    Article  CAS  PubMed  Google Scholar 

  71. Landucci E, Lattanzi R, Gerace E, Scartabelli T, Balboni G, Negri L, Pellegrini-Giampietro DE (2016) Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance in vitro. Neuropharmacology 108:39–48. https://doi.org/10.1016/j.neuropharm.2016.04.043

    Article  CAS  PubMed  Google Scholar 

  72. Zhu S, Li Y, Bennett S, Chen J, Weng IZ, Huang L, Xu H, Xu J (2020) The role of glial cell line-derived neurotrophic factor family member artemin in neurological disorders and cancers. Cell Prolif 53(7):e12860. https://doi.org/10.1111/cpr.12860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Franchi S, Sacerdote P, Panerai A (2017) The prokineticin system: an interface between neural inflammation and pain. Neurol Sci 38(Suppl 1):27–30. https://doi.org/10.1007/s10072-017-2875-z

    Article  PubMed  Google Scholar 

  74. Zhang S, Luo T, Wang J (2021) Stable Cells with NF-kappaB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs. J Inflamm Res 14:917–928. https://doi.org/10.2147/JIR.S298938

    Article  PubMed  PubMed Central  Google Scholar 

  75. Meunier A, Latremoliere A, Dominguez E, Mauborgne A, Philippe S, Hamon M, Mallet J, Benoliel JJ et al (2007) Lentiviral-mediated Targeted NF-kappaB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat. Mol Ther 15(4):687–697. https://doi.org/10.1038/sj.mt.6300107

    Article  CAS  PubMed  Google Scholar 

  76. Su Y, Zong S, Wei C, Song F, Feng H, Qin A, Lian Z, Fu F et al (2019) Salidroside promotes rat spinal cord injury recovery by inhibiting inflammatory cytokine expression and NF-kappaB and MAPK signaling pathways. J Cell Physiol 234(8):14259–14269. https://doi.org/10.1002/jcp.28124

    Article  CAS  PubMed  Google Scholar 

  77. Zhu S, Hu X, Bennett S, Mai Y, Xu J (2022) Molecular Structure, Expression and Role of TAFA4 and its Receptor FPR1 in the Spinal Cord. Front Cell Dev Biol 10:911414. https://doi.org/10.3389/fcell.2022.911414

    Article  PubMed  PubMed Central  Google Scholar 

  78. Qu X, Zhuang G, Yu L, Meng G, Ferrara N (2012) Induction of Bv8 expression by granulocyte colony-stimulating factor in CD11b+Gr1+ cells: key role of Stat3 signaling. J Biol Chem 287(23):19574–19584. https://doi.org/10.1074/jbc.M111.326801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ma M, Li H, Wu J, Zhang Y, Shen H, Li X, Wang Z, Chen G (2020) Roles of Prokineticin 2 in Subarachnoid Hemorrhage-Induced Early Brain Injury via Regulation of Phenotype Polarization in Astrocytes. Mol Neurobiol 57(9):3744–3758. https://doi.org/10.1007/s12035-020-01990-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the well-equipped Scientific and Research Platform and experimental animal center provided by the Institute of Neuroscience of Zhengzhou University. We would also like to thank our colleagues at the First Affiliated Hospital of Zhengzhou University and the School of Basic Medicine of Zhengzhou University for full support. We would acknowledge the valuable reviewer comments on this paper.

Funding

This study was supported by grants from the National Natural Science Foundation of China Youth Project (Grant number: 82001191), and The Henan Medical Science and Technology Research Youth Project Co-Sponsored by the Province and Ministry in China (Grant number: SBGJ2021030880), and the Henan province young and middle-aged health science and technology innovation outstanding young talent training project (NO: YXKC2020059, YXKC2021018).

Author information

Authors and Affiliations

Authors

Contributions

WW, YX and MY: conceptualization. WW, YX and JY: designed and implemented of experiments; XW, YZ and ZY: data collection and analysis; YW, ZL and CH: preparation of articles and references; WW: first draft writing; QB and ZL: study design, experimental supervision, experimental administration, and revision of the manuscript. All of the authors participated in manuscript revision, and acknowledged the final version of the manuscript.

Corresponding authors

Correspondence to Qian Bai or Zhisong Li.

Ethics declarations

Ethics Approval

The animal experiments were reviewed and approved by the Ethics Committee of the Second Affiliated Hospital. All efforts were aimed at preventing or reducing the suffering of animals.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Yuan, M., Xu, Y. et al. Prokineticin-2 Participates in Chronic Constriction Injury-Triggered Neuropathic Pain and Anxiety via Regulated by NF-κB in Nucleus Accumbens Shell in Rats. Mol Neurobiol 61, 2764–2783 (2024). https://doi.org/10.1007/s12035-023-03680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03680-6

Keywords

Navigation