Skip to main content
Log in

Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC–MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets for this study can be found in the jianguoyun (https://www.jianguoyun.com/p/DYUQoqUQstXtChi_oP8EIAA).

Abbreviations

CSS:

Chaihu Shugan San

PMS:

Perimenopausal syndrome

CUMS:

Chronic unpredictable mild stress

E2:

Estradiol

Glu:

Glutamate

5-HT:

5-Hydroxytryptamine

fMRI:

Functional magnetic resonance imaging

LC–MS/MS:

Liquid chromatography-tandem mass spectrometry

OVX:

Ovariectomized

BOLD:

Blood oxygen level-dependent

TCM:

Traditional Chinese Medicine

FST:

Forced swimming test

SPT:

Sucrose preference test

OFT:

Open field test

SPM:

Statistical Parametric Mapping

UPLC:

Ultra performance liquid chromatography

CUR:

Curtain Gas

ISVF:

Ion Sapary Voltage Floating

MRM:

Multiple reaction monitoring

MDD:

Major depressive disorder

HPA:

Hypothalamic–pituitary–adrenal axis (HPA)

CRS:

Chronic restraint stress

LAu:

Left auditory cortex

LCPu:

Left caudate putamen

LDTLN:

Left dorsal tegmental lateral nucleus

LHip:

Left hippocampus

LM:

Left motor cortex

LRS:

Left retrosplenial cortex

LV:

Left visual cortex

ROI:

Region of interest

RCPu:

Right caudate putamen

RDTLN:

Right dorsal tegmental lateral nucleus

RHip:

Right hippocampus

RMO:

Right medulla oblongata

RPFC:

Right prefrontal cortex

ROF:

Right olfactory cortex

RRS:

Right retrosplenial cortex

RS:

Right sensory cortex

FID-EPI:

Free induction decay echo planar imaging

FC:

Functional connectivity

References

  1. Bromberger JT, Epperson CN (2018) Depression during and after the perimenopause: impact of hormones, genetics, and environmental determinants of disease. Obstet Gynecol Clin North Am 45(4):663–678. https://doi.org/10.1016/j.ogc.2018.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  2. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20(3):279–307. https://doi.org/10.1210/edrv.20.3.0365

    Article  CAS  PubMed  Google Scholar 

  3. Ancelin ML, Scali J, Ritchie K (2007) Hormonal therapy and depression: are we overlooking an important therapeutic alternative? J Psychosom Res 62(4):473–485. https://doi.org/10.1016/j.jpsychores.2006.12.019

    Article  PubMed  Google Scholar 

  4. Chen S, Asakawa T, Ding S, Liao L, Zhang L, Shen J, Yu J, Sugiyama K et al (2013) Chaihu-Shugan-San administration ameliorates perimenopausal anxiety and depression in rats. PLoS One 8(8):72428. https://doi.org/10.1371/journal.pone.0072428

    Article  ADS  CAS  Google Scholar 

  5. Morgan KN, Derby CA, Gleason CE (2018) Cognitive changes with reproductive aging, perimenopause, and menopause. Obstet Gynecol Clin North Am 45(4):751–763. https://doi.org/10.1016/j.ogc.2018.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joffe H, de Wit A, Coborn J, Crawford S, Freeman M, Wiley A, Athappilly G, Kim S et al (2020) Impact of estradiol variability and progesterone on mood in perimenopausal women with depressive symptoms. J Clin Endocrinol Metab 105(3):e642-650. https://doi.org/10.1210/clinem/dgz181

    Article  PubMed  Google Scholar 

  7. Lu W, Guo W, Hou K, Zhao H, Shi L, Dong K, Qiu J (2018) Grey matter differences associated with age and sex hormone levels between premenopausal and perimenopausal women: a voxel-based morphometry study. J Neuroendocrinol 30(12):12655. https://doi.org/10.1111/jne.12655

    Article  CAS  Google Scholar 

  8. Liu M, Yang H, Qin J, Yao Q, Yang G, Li J (2021) Changes in the regional homogeneity of resting-state magnetic resonance imaging in perimenopausal women. BMC Womens Health 21(1):39. https://doi.org/10.1186/s12905-020-01171-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li J, He P, Zhang J, Li N (2021) Orcinol glucoside improves the depressive-like behaviors of perimenopausal depression mice through modulating activity of hypothalamic-pituitary-adrenal/ovary axis and activating BDNF- TrkB-CREB signaling pathway. Phytother Res 35(10):5795–5807. https://doi.org/10.1002/ptr.7237

    Article  CAS  PubMed  Google Scholar 

  10. Konishi K, Cherkerzian S, Jacobs EG, Richards C, Remington A, Aizley H, Misra M, Lasley BL et al (2019) Impact of adrenal hormones, reproductive aging, and major depression on memory circuitry decline in early midlife. Brain Res 1721:146303. https://doi.org/10.1016/j.brainres.2019.146303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao L, Gao T, Zeng T, Huang P, Wong NK, Dong Z, Li Y, Deng G et al (2021) Blockade of Indoleamine 2, 3-dioxygenase 1 ameliorates hippocampal neurogenesis and BOLD-fMRI signals in chronic stress precipitated depression. Aging (Albany NY) 13(4):5875–5891. https://doi.org/10.18632/aging.202511

    Article  CAS  PubMed  Google Scholar 

  12. Dong Z, Liu Z, Liu Y, Zhang R, Mo H, Gao L, Shi Y (2020) Physical exercise rectifies CUMS-induced aberrant regional homogeneity in mice accompanied by the adjustment of skeletal muscle PGC-1a/IDO1 signals and hippocampal function. Behav Brain Res 383:112516. https://doi.org/10.1016/j.bbr.2020.112516

    Article  PubMed  Google Scholar 

  13. Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH et al (2020) Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19(9):609–633. https://doi.org/10.1038/s41573-020-0072-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rettberg JR, Yao J, Brinton RD (2014) Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 35(1):8–30. https://doi.org/10.1016/j.yfrne.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  15. Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB, Zhou J, Cheng PF, Yang YT et al (2015) Combined metabolomics and proteomics analysis of major depression in an animal model: perturbed energy metabolism in the chronic mild stressed rat cerebellum. OMICS 19(7):383–392. https://doi.org/10.1089/omi.2014.0164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim SH, Han J, Seog DH, Chung JY, Kim N, Hong Park Y, Lee SK (2005) Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of depression. Life Sci 76(11):1297–1306. https://doi.org/10.1016/j.lfs.2004.10.022

    Article  CAS  PubMed  Google Scholar 

  17. Chen XQ, Li CF, Chen SJ, Liang WN, Wang M, Wang SS, Dong SQ, Yi LT et al (2018) The antidepressant-like effects of Chaihu Shugan San: dependent on the hippocampal BDNF-TrkB-ERK/Akt signaling activation in perimenopausal depression-like rats. Biomed Pharmacother 105:45–52. https://doi.org/10.1016/j.biopha.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  18. Chen Q, Li C, Tao E, Asakawa T, Zhang Y (2022) Exploration of a brain-liver-communication-related mechanism involved in the experimental perimenopausal depression rat model using Chaihu-Shugan-San. Neurochem Res 47(5):1354–1368. https://doi.org/10.1007/s11064-022-03534-y

    Article  CAS  PubMed  Google Scholar 

  19. He Z, Fan R, Zhang C, Tang T, Liu X, Luo J, Cui H, Wang Y et al (2019) Chaihu-Shugan-San reinforces CYP3A4 expression via pregnane X receptor in depressive treatment of liver-Qi stagnation syndrome. Evid Based Complement Alternat Med 2019:9781675. https://doi.org/10.1155/2019/9781675

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li L, Yu AL, Wang ZL, Chen K, Zheng W, Zhou JJ, Xie Q, Yan HB et al (2019) Chaihu-Shugan-San and absorbed meranzin hydrate induce anti-atherosclerosis and behavioral improvements in high-fat diet ApoE(-/-) mice via anti-inflammatory and BDNF-TrkB pathway. Biomed Pharmacother 115:108893. https://doi.org/10.1016/j.biopha.2019.108893

    Article  CAS  PubMed  Google Scholar 

  21. Yan L, Xu X, He Z, Wang S, Zhao L, Qiu J, Wang D, Gong Z et al (2020) Antidepressant-like effects and cognitive enhancement of coadministration of Chaihu Shugan San and fluoxetine: dependent on the BDNF-ERK-CREB signaling pathway in the hippocampus and frontal cortex. Biomed Res Int 2020:2794263. https://doi.org/10.1155/2020/2794263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han SK, Kim JK, Park HS, Shin YJ, Kim DH (2021) Chaihu-Shugan-San (Shihosogansan) alleviates restraint stress-generated anxiety and depression in mice by regulating NF-κB-mediated BDNF expression through the modulation of gut microbiota. Chin Med 16(1):77. https://doi.org/10.1186/s13020-021-00492-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan R, Huang X, Wang Y, Chen X, Ren P, Ji H, Xie Y, Zhang Y et al (2012) Ethnopharmacokinetic- and activity-guided isolation of a new antidepressive compound from fructus aurantii found in the traditional chinese medicine chaihu-shugan-san: a new approach and its application. Evid Based Complement Alternat Med 2012:607584. https://doi.org/10.1155/2012/607584

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qiu J, Hu SY, Shi GQ, Wang SE (2014) Changes in regional cerebral blood flow with Chaihu-Shugan-San in the treatment of major depression. Pharmacogn Mag 10(40):503–508. https://doi.org/10.4103/0973-1296.141775

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun Y, Xu X, Zhang J, Chen Y (2018) Treatment of depression with Chai Hu Shu Gan San: a systematic review and meta-analysis of 42 randomized controlled trials. BMC Complement Altern Med 18(1):66. https://doi.org/10.1186/s12906-018-2130-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang S, Lu Y, Chen W, Shi W, Zhao Q, Zhao J, Li L (2021) Network pharmacology and experimental evidence: PI3K/AKT signaling pathway is involved in the antidepressive roles of Chaihu Shugan San. Drug Des Devel Ther 15:3425–3441. https://doi.org/10.2147/dddt.S315060

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen W, Li L, Zhao J (2022) SIRT1/FOXO1 Axis-mediated hippocampal angiogenesis is involved in the antidepressant effect of Chaihu Shugan San. Drug Des Devel Ther 16:2783–2801. https://doi.org/10.2147/dddt.S370825

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang GB, Li QY, Chen QL, Su SB (2013) Network pharmacology: a new approach for chinese herbal medicine research. Evid Based Complement Alternat Med 2013:621423. https://doi.org/10.1155/2013/621423

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mu J, Zhang S, Tang F, Liu S, Zhang Q, Du Q, Wang X, Wang Q et al (2021) Mechanism underlying effect of Chaihu Shugan San on major depressive disorder: a network pharmacology-based study. J Tradit Chin Med 41(2):338–348

    PubMed  Google Scholar 

  30. Hajibabaie F, Abedpoor N, Safavi K, Taghian F (2022) Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 46(12):e14480. https://doi.org/10.1111/jfbc.14480

    Article  CAS  PubMed  Google Scholar 

  31. Abedpoor N, Taghian F, Hajibabaie F (2022) Cross brain-gut analysis highlighted hub genes and LncRNA networks differentially modified during leucine consumption and endurance exercise in mice with depression-like behaviors. Mol Neurobiol 59(7):4106–4123. https://doi.org/10.1007/s12035-022-02835-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hajibabaie F, Abedpoor N, Taghian F, Safavi K (2023) A cocktail of polyherbal bioactive compounds and regular mobility training as senolytic approaches in age-dependent Alzheimer’s: the in silico analysis, lifestyle intervention in old age. J Mol Neurosci 73(2–3):171–184. https://doi.org/10.1007/s12031-022-02086-8

    Article  CAS  PubMed  Google Scholar 

  33. Dang H, Sun L, Liu X, Peng B, Wang Q, Jia W, Chen Y, Pan A et al (2009) Preventive action of Kai Xin San aqueous extract on depressive-like symptoms and cognition deficit induced by chronic mild stress. Exp Biol Med (Maywood) 234(7):785–793. https://doi.org/10.3181/0812-rm-354

    Article  CAS  PubMed  Google Scholar 

  34. Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J (2012) Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 36(9):2085–2117. https://doi.org/10.1016/j.neubiorev.2012.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qiu J, Hu SY, Zhang CH, Shi GQ, Wang SE, Xiang T (2014) The effect of Chaihu-Shugan-San and its components on the expression of ERK5 in the hippocampus of depressed rats. J Ethnopharmacol 152(2):320–326. https://doi.org/10.1016/j.jep.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  36. Callegari C, Buttarelli M, Cromi A, Diurni M, Salvaggio F, Bolis PF (2007) Female psychopathologic profile during menopausal transition: a preliminary study. Maturitas 56(4):447–451. https://doi.org/10.1016/j.maturitas.2006.08.001

    Article  PubMed  Google Scholar 

  37. Szpunar MJ, Parry BL (2018) A systematic review of cortisol, thyroid-stimulating hormone, and prolactin in peripartum women with major depression. Arch Womens Ment Health 21(2):149–161. https://doi.org/10.1007/s00737-017-0787-9

    Article  PubMed  Google Scholar 

  38. Li D, Li Y, Chen Y, Li H, She Y, Zhang X, Chen S, Chen W et al (2019) Neuroprotection of reduced thyroid hormone with increased estrogen and progestogen in postpartum depression. Biosci Rep 39(9):BSR20182382. https://doi.org/10.1042/bsr20182382

  39. Slavich GM, Sacher J (2019) Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacology 236(10):3063–3079. https://doi.org/10.1007/s00213-019-05326-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rasheed N, Tyagi E, Ahmad A, Siripurapu KB, Lahiri S, Shukla R, Palit G (2008) Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium. J Ethnopharmacol 117(2):257–262. https://doi.org/10.1016/j.jep.2008.01.035

    Article  CAS  PubMed  Google Scholar 

  41. Bhutani MK, Bishnoi M, Kulkarni SK (2009) Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav 92(1):39–43. https://doi.org/10.1016/j.pbb.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  42. Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W, Wang Y (2009) Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuropsychopharmacol Biol Psychiatry 33(8):1417–1424. https://doi.org/10.1016/j.pnpbp.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  43. Ahmad A, Rasheed N, Banu N, Palit G (2010) Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress 13(4):355–364. https://doi.org/10.3109/10253891003667862

    Article  PubMed  Google Scholar 

  44. Mahar I, Bambico FR, Mechawar N, Nobrega JN (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 38:173–192. https://doi.org/10.1016/j.neubiorev.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  45. Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57. https://doi.org/10.1016/j.bbr.2014.07.038

    Article  CAS  PubMed  Google Scholar 

  46. Hillhouse TM, Porter JH (2015) A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol 23(1):1–21. https://doi.org/10.1037/a0038550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13(1):22–37. https://doi.org/10.1038/nrn3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22(3):238–249. https://doi.org/10.1038/nm.4050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F (1993) Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 150(11):1731–1733. https://doi.org/10.1176/ajp.150.11.1731

    Article  CAS  PubMed  Google Scholar 

  50. Altamura C, Maes M, Dai J, Meltzer HY (1995) Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 5(Suppl):71–75. https://doi.org/10.1016/0924-977x(95)00033-l

    Article  CAS  PubMed  Google Scholar 

  51. Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37(3):124–129. https://doi.org/10.1159/000026491

    Article  CAS  PubMed  Google Scholar 

  52. Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30(6):1155–1158. https://doi.org/10.1016/j.pnpbp.2006.03.036

    Article  CAS  PubMed  Google Scholar 

  53. Küçükibrahimoğlu E, Saygin MZ, Calişkan M, Kaplan OK, Unsal C, Gören MZ (2009) The change in plasma GABA, glutamine and glutamate levels in fluoxetine- or S-citalopram-treated female patients with major depression. Eur J Clin Pharmacol 65(6):571–577. https://doi.org/10.1007/s00228-009-0650-7

    Article  CAS  PubMed  Google Scholar 

  54. McEwen BS, Eiland L, Hunter RG, Miller MM (2012) Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62(1):3–12. https://doi.org/10.1016/j.neuropharm.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  55. Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpé S (1998) Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 97(4):302–308. https://doi.org/10.1111/j.1600-0447.1998.tb10004.x

    Article  CAS  PubMed  Google Scholar 

  56. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827. https://doi.org/10.1038/386824a0

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Zhang Y, Ma L, Zhang X, Yue L, Wang J, Zheng J, Cui S, Liu FY et al (2023) Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats. Neurobiol Dis 180:106069. https://doi.org/10.1016/j.nbd.2023.106069

    Article  CAS  PubMed  Google Scholar 

  58. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, Egan MF, Mattay VS et al (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8(6):828–834. https://doi.org/10.1038/nn1463

    Article  CAS  PubMed  Google Scholar 

  59. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62(5):429–437. https://doi.org/10.1016/j.biopsych.2006.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  60. Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH (2008) Neural responses to monetary incentives in major depression. Biol Psychiatry 63(7):686–692. https://doi.org/10.1016/j.biopsych.2007.07.023

    Article  PubMed  Google Scholar 

  61. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S et al (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 106(6):1942–1947. https://doi.org/10.1073/pnas.0812686106

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Fisher PM, Larsen CB, Beliveau V, Henningsson S, Pinborg A, Holst KK, Jensen PS, Svarer C et al (2017) Pharmacologically induced sex hormone fluctuation effects on resting-state functional connectivity in a risk model for depression: a randomized trial. Neuropsychopharmacology 42(2):446–453. https://doi.org/10.1038/npp.2016.208

    Article  CAS  PubMed  Google Scholar 

  63. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B et al (2017) Erratum: resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(2):264. https://doi.org/10.1038/nm0217-264d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang P, Dong Z, Huang W, Zhou C, Zhong W, Hu P, Wen G, Sun X et al (2017) Voluntary wheel running ameliorates depression-like behaviors and brain blood oxygen level-dependent signals in chronic unpredictable mild stress mice. Behav Brain Res 330:17–24. https://doi.org/10.1016/j.bbr.2017.05.032

    Article  PubMed  Google Scholar 

  65. Hui JJ, Xi GJ, Liu SS, Li XL, Geng LY, Teng GJ, Nie BB, Shan BC et al (2016) Blood oxygen level-dependent signals via fMRI in the mood-regulating circuit using two animal models of depression are reversed by chronic escitalopram treatment. Behav Brain Res 311:210–218. https://doi.org/10.1016/j.bbr.2016.05.044

    Article  PubMed  Google Scholar 

  66. Huang P, Gao T, Dong Z, Zhou C, Lai Y, Pan T, Liu Y, Zhao X et al (2018) Neural circuitry among connecting the hippocampus, prefrontal cortex and basolateral amygdala in a mouse depression model: associations correlations between BDNF levels and BOLD - fMRI signals. Brain Res Bull 142:107–115. https://doi.org/10.1016/j.brainresbull.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  67. Smith MA, Makino S, Kim SY, Kvetnansky R (1995) Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136(9):3743–3750. https://doi.org/10.1210/endo.136.9.7649080

    Article  CAS  PubMed  Google Scholar 

  68. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777. https://doi.org/10.1523/jneurosci.15-03-01768.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Larsen MH, Mikkelsen JD, Hay-Schmidt A, Sandi C (2010) Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 44(13):808–816. https://doi.org/10.1016/j.jpsychires.2010.01.005

    Article  PubMed  Google Scholar 

  70. Shi SS, Shao SH, Yuan BP, Pan F, Li ZL (2010) Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med J 51(5):661–671. https://doi.org/10.3349/ymj.2010.51.5.661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547. https://doi.org/10.1523/jneurosci.15-11-07539.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54(7):703–709. https://doi.org/10.1016/s0006-3223(03)00073-8

    Article  CAS  PubMed  Google Scholar 

  73. Czubak A, Nowakowska E, Kus K, Burda K, Metelska J, Baer-Dubowska W, Cichocki M (2009) Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF). Pharmacol Rep 61(6):1017–1023. https://doi.org/10.1016/s1734-1140(09)70163-x

    Article  CAS  PubMed  Google Scholar 

  74. Musazzi L, Cattaneo A, Tardito D, Barbon A, Gennarelli M, Barlati S, Racagni G, Popoli M (2009) Early raise of BDNF in hippocampus suggests induction of posttranscriptional mechanisms by antidepressants. BMC Neurosci 10:48. https://doi.org/10.1186/1471-2202-10-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gersner R, Toth E, Isserles M, Zangen A (2010) Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol Psychiatry 67(2):125–132. https://doi.org/10.1016/j.biopsych.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  76. Hanson ND, Owens MJ, Nemeroff CB (2011) Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology 36(13):2589–2602. https://doi.org/10.1038/npp.2011.220

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roopan S, Larsen ER (2017) Use of antidepressants in patients with depression and comorbid diabetes mellitus: a systematic review. Acta Neuropsychiatr 29(3):127–139. https://doi.org/10.1017/neu.2016.54

    Article  PubMed  Google Scholar 

  78. Østergaard L, Jørgensen MB, Knudsen GM (2018) Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 94:248–270. https://doi.org/10.1016/j.neubiorev.2018.08.007

    Article  PubMed  Google Scholar 

  79. Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625. https://doi.org/10.1016/s0166-2236(02)02264-6

    Article  CAS  PubMed  Google Scholar 

  80. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93(2):182–203. https://doi.org/10.1016/j.pneurobio.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  82. Sun P, Hua Q, Schmitt AG (2016) Energy metabolism, adult neurogenesis and their possible roles in Alzheimer’s disease: a brief overview. Curr Top Med Chem 16(5):493–502. https://doi.org/10.2174/1568026615666150813142611

    Article  CAS  PubMed  Google Scholar 

  83. Wei K, Bao W, Zhao Z, Zhou W, Liu J, Wei Y, Li M, Wu X et al (2018) Changes of the brain activities after chronic restraint stress in rats: a study based on (18)F-FDG PET. Neurosci Lett 665:104–109. https://doi.org/10.1016/j.neulet.2017.11.047

    Article  CAS  PubMed  Google Scholar 

  84. Czéh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 98(22):12796–12801. https://doi.org/10.1073/pnas.211427898

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This study was funded by the National Natural Science Foundation of China (No. 82274409 and 82174248) and the Natural Science Foundation of Fujian Province (No. 2023J01868).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, R.T.H. and G.M.; data curation, R.T.H. and X.T.; formal analysis, S.X.L. and J.Y.S.; funding acquisition, W.N.L.; investigation, L.M.; methodology, L.M. and L.G.; writing original draft, R.T.H. and G.M.; writing—review and editing, W.N.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Wenna Liang.

Ethics declarations

Ethics Approval

The animal study was reviewed and approved by the Animal Care and Use Committee of the Fujian University of TCM (Approval number: FJTCM IACUC 2020026).

Consent to Participate

Not applicable.

Consent for Publication

All the authors have read the manuscript and agree for this publication.

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.15 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Gong, M., Tan, X. et al. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 61, 1655–1672 (2024). https://doi.org/10.1007/s12035-023-03615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03615-1

Keywords

Navigation