Skip to main content
Log in

Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

An in vitro model of delay eyeblink classical conditioning was developed to investigate synaptic plasticity mechanisms underlying acquisition of associative learning. This was achieved by replacing real stimuli, such as an airpuff and tone, with patterned stimulation of the cranial nerves using an isolated brainstem preparation from turtle. Here, our primary findings regarding cellular and molecular mechanisms for learning acquisition using this unique approach are reviewed. The neural correlate of the in vitro eyeblink response is a replica of the actual behavior, and features of conditioned responses (CRs) resemble those observed in behavioral studies. Importantly, it was shown that acquisition of CRs did not require the intact cerebellum, but the appropriate timing did. Studies of synaptic mechanisms indicate that conditioning involves two stages of AMPA receptor (AMPAR) trafficking. Initially, GluA1-containing AMPARs are targeted to synapses followed later by replacement by GluA4 subunits that support CR expression. This two-stage process is regulated by specific signal transduction cascades involving PKA and PKC and is guided by distinct protein chaperones. The expression of the brain-derived neurotrophic factor (BDNF) protein is central to AMPAR trafficking and conditioning. BDNF gene expression is regulated by coordinated epigenetic mechanisms involving DNA methylation/demethylation and chromatin modifications that control access of promoters to transcription factors. Finally, a hypothesis is proposed that learning genes like BDNF are poised by dual chromatin features that allow rapid activation or repression in response to environmental stimuli. These in vitro studies have advanced our understanding of the cellular and molecular mechanisms that underlie associative learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

NA.

Code Availability

NA.

References

  1. Gormezano I, Schneiderman N, Deaux E, Fuentes I (1962) Nictitating membrane: classical conditioning and extinction in the albino rabbit. Science 138:33–34

    Article  PubMed  CAS  Google Scholar 

  2. Gormezano I, Kehoe EJ, Marshall BS (1983) Twenty years of classical conditioning with the rabbit. Prog Psychobiol Physiol Psych 10:197–275

    Google Scholar 

  3. Thompson RF (1983) Neuronal substrates of simple associative learning: classical conditioning. Trends Neurosci 6:270–275

    Article  Google Scholar 

  4. Delgado-Garcia JM, Gruart A (2006) Building new motor responses: eyelid conditioning revisited. Trends Neurosci 29:330–338

    Article  PubMed  CAS  Google Scholar 

  5. Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR (2009) The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neurosci 162:787–796

    Article  CAS  Google Scholar 

  6. Thompson F, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neurosci 162:732–755

    Article  CAS  Google Scholar 

  7. Mauk MD, Khilkevich A, Halverson H (2014) Cerebellar mechanisms of learning and plasticity revealed by delay eyelid conditioning. Int Rev Neurobiol 117:21–37

    Article  PubMed  Google Scholar 

  8. Clark GA, McCormick DA, Lavond DG, Thompson RF (1984) Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal response. Brain Res 291:125–136

    Article  PubMed  CAS  Google Scholar 

  9. Yeo CH, Hardiman MJ, Glickstein M (1985a) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60:87–98

    Article  PubMed  CAS  Google Scholar 

  10. Yeo CH, Hardiman MJ, Glickstein M (1985b) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res 60:99–113

    Article  PubMed  CAS  Google Scholar 

  11. Steinmetz JE, Lavond DG, Ivkovich D, Logan CG, Thompson RF (1992) Disruption of classical eyelid conditioning after cerebellar lesions: damage to a memory trace system or a simple performance deficit? J Neurosci 12:4403–4426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McCormick DA, Thompson RF (1984) Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci 4:2811–2822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Berthier NE, Moore JW (1986) Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp Brain Res 63:341–350

    Article  PubMed  CAS  Google Scholar 

  14. Berthier NE, Moore JW (1990) Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Exp Brain Res 83:44–54

    Article  PubMed  CAS  Google Scholar 

  15. Hesslow G, Ivarsson M (1994) Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport 5:649–652

    Article  PubMed  CAS  Google Scholar 

  16. Norman RJ, Buchwald JS, Villablanca JR (1977) Classical conditioning with auditory discrimination of the eye blink in decerebrate cats. Science 196:551–553

    Article  PubMed  CAS  Google Scholar 

  17. Welsh JP, Harvey JA (1989) Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. J Neurosci 9:299–311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kelly TM, Zuo C, Bloedel JR (1990) Classical conditioning of the eye-blink reflex in the decerebrate-decerebellate rabbit. Behav Brain Res 38:7–18

    Article  PubMed  CAS  Google Scholar 

  19. Gruart A, Blazquez P, Delgado-Garcia JM (1994) Kinematic analyses of classically-conditioned eyelid movements in the cat suggest a brain stem site for motor learning. Neurosci Lett 175:81–84

    Article  PubMed  CAS  Google Scholar 

  20. Anderson CW, Keifer J (1997) The cerebellum and red nucleus are not required for in vitro classical conditioning of the turtle abducens nerve response. J Neurosci 17:9736–9745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nordholm AF, Lavond DG, Thompson RF (1991) Are eyeblink responses to tone in the decerebrate, decerebellate rabbit conditioned responses? Behav Brain Res 44:27–34

    Article  PubMed  CAS  Google Scholar 

  22. Chen L, Bao S, Lockard JM, Kim JJ, Thompson RF (1996) Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. J Neurosci 16:2829–2838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33:253–258

    Article  PubMed  CAS  Google Scholar 

  24. Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27:2493–2502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Freeman JH (2015) Cerebellar learning mechanisms. Brain Res 1621:260–269

    Article  PubMed  CAS  Google Scholar 

  26. Halversson HE, Khilkevich A, Mauk MD (2015) Relating cerebellar Purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J Neurosci 35:7813–7832

    Article  Google Scholar 

  27. Jirenhead DA, Hesslow G (2016) Are Purkinje cell pauses drivers of classically conditioned blink responses? Cerebellum 15:526–534

    Article  Google Scholar 

  28. Freeman JH, Nicholson DA (1999) Neuronal activity in the cerebellar interpositus and lateral pontine nuclei during inhibitory classical conditioning of the eyeblink response. Brain Res 833:225–233

    Article  PubMed  CAS  Google Scholar 

  29. Aizenman CD, Linden DJ (2000) Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nat Neurosci 3:109–111

    Article  PubMed  CAS  Google Scholar 

  30. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD (2006) Learning-induced plasticity in deep cerebellar nucleus. J Neurosci 26:12656–12663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pugh JR, Raman IM (2006) Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by post inhibitory rebound current. Neuron 51:113–123

    Article  PubMed  CAS  Google Scholar 

  32. Pugh JR, Raman IM (2008) Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci 28:10549–10560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Person AL, Raman IM (2010) Deactivation of L-type Ca current by inhibition controls LTP at excitatory synapses in the cerebellar nuclei. Neuron 66:550–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Schreurs BG, Alkon DL (1993) Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning. Brain Res 631:235–240

    Article  PubMed  CAS  Google Scholar 

  35. Welsh JP, Yamaguchi H, Zeng XH, Kojo M, Nakada Y, Takagi A, Sugimori M, Llinas RR (2005) Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci USA 102:17166–17171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schonewille M, Gao Z, Boele H-J, Veloz MFV, Amerika WE, Simek AAM, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hesslow G, Jirenhed D-A, Rasmussen A, Johansson F (2013) Classical conditioning of motor responses: what is the learning mechanism? Neural Netw 47:81–87

    Article  PubMed  Google Scholar 

  38. Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G (2018) Absence of parallel fibre to Purkinje cell LTD during eyeblink conditioning. Sci Reports 8:14777

    Google Scholar 

  39. Johansson F (2019) Intrinsic memory of temporal intervals in cerebellar Purkinje cells. Neurobiol Learn & Mem 166:107103

    Article  Google Scholar 

  40. Keifer J, Houk JC (1991) Role of excitatory amino acids in mediating burst discharge of red nucleus neurons in the in vitro turtle brainstem-cerebellum. J Neurophysiol 65:454–467

    Article  PubMed  CAS  Google Scholar 

  41. Keifer J, Vyas D, Houk JC (1992) Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J Neurosci 12:3187–3199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Keifer J (1996) Effects of red nucleus inactivation on burst discharge in turtle cerebellum in vitro: evidence for positive feedback. J Neurophysiol 76:2200–2210

    Article  PubMed  CAS  Google Scholar 

  43. Keifer J (1993) In vitro eye-blink reflex model: role of excitatory amino acid receptors and labeling of network activity with sulforhodamine. Exp Brain Res 97:239–253

    Article  PubMed  CAS  Google Scholar 

  44. Keifer J, Armstrong KE, Houk JC (1995) In vitro classical conditioning of abducens nerve discharge in turtles. J Neurosci 15:5036–5048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zheng Z, Sabirzhanov B, Keifer J (2012) Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant. J Neurophysiol 108:101–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Walls GL (1942) The vertebrate eye and its adaptive radiation. Canbrook Institute of Science, New York

    Google Scholar 

  47. Barbas-Henry HA, Lohman AHM (1988) The motor nuclei and sensory neurons of the IIIrd, IVth, and VIth cranial nerves in the monitor lizard, Varanus exanthematicus. J Comp Neurol 267:370–386

    Article  PubMed  CAS  Google Scholar 

  48. Herrick JL, Keifer J (1998) Central trigeminal and posterior eighth nerve projections in the turtle Chrysemys picta studied in vitro. Brain Behav Evol 51:183–201

    Article  PubMed  CAS  Google Scholar 

  49. Zhu D, Keifer J (2004) Pathways controlling trigeminal and auditory nerve-evoked abducens eyeblink reflexes in pond turtles. Brain Behav Evol 64:207–222

    Article  PubMed  Google Scholar 

  50. Powers AS, Evinger CE (1993) Characterization of blink responses in turtles. Second Int Behav Neurosci Soc Conf, Clearwater, FL

    Google Scholar 

  51. Barbas-Henry HA, Wouterlood FG (1988) Synaptic connections between primary trigeminal afferents and accessory abducens motoneurons in the monitor lizard, Varanus exanthematicus. J Comp Neurol 267:387–397

    Article  PubMed  CAS  Google Scholar 

  52. Weiss C, Disterhoft JF (1985) Connections of the rabbit abducens nucleus. Brain Res 326:172–178

    Article  PubMed  CAS  Google Scholar 

  53. Van Ham JJ, Yeo CH (1996) Trigeminal inputs to eyeblink motoneurons in the rabbit. Exp Neurol 142:244–257

    Article  PubMed  Google Scholar 

  54. Berthier NE, Moore JW (1983) The nictitating membrane response: an electrophysiological study of the abducens nerve and nucleus and the accessory abducens nucleus in rabbit. Brain Res 258:201–210

    Article  PubMed  CAS  Google Scholar 

  55. Disterhoft JF, Weiss C (1985) Motoneuronal control of eye retraction/nictitating membrane extension in rabbit. In: Alkon DL, Woody CD (eds) Neural mechanisms of conditioning. Plenum, New York, pp. 197–208

    Google Scholar 

  56. Evinger C, Sibony PA, Manning KA, Fiero RA (1988) A pharmacological distinction between the long and short latency pathways of the human blink reflex revealed with tobacco. Exp Brain Res 73:477–480

    Article  PubMed  CAS  Google Scholar 

  57. Pellegrini JJ, Horn AKE, Evinger C (1995) The trigeminally evoked blink reflex I. Neuronal circuits. Exp Brain Res 107:166–180

    Article  PubMed  CAS  Google Scholar 

  58. Delgado-Garcia JM, Evinger C, Escudero M, Baker R (1990) Behavior of accessory abducens motoneurons during eye retraction and rotationin the alert cat. J Neurophysiol 64:413–422

    Article  PubMed  CAS  Google Scholar 

  59. Medina JF, Garcia KS, Mauk MD (2001) A mechanism for savings in the cerebellum. J Neurosci 21:4081–4089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci 13:1708–1718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  62. Tsien JZ (2000) Linking Hebb’s coincidence-detection to memory formation. Curr Opin Neurobiol 10:266–273

    Article  PubMed  CAS  Google Scholar 

  63. Jacobs S, Cui Z, Feng R, Wang H, Wang D, Tsien JZ (2014) Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions. PLoS One 9:e111865

    Article  PubMed  PubMed Central  Google Scholar 

  64. Keifer J, Mokin M (2004) Distribution of anterogradely labeled trigeminal and auditory nerve boutons on abducens motor neurons in turtles: Implications for in vitro classical conditioning. J Comp Neurol 471:144–152

    Article  PubMed  Google Scholar 

  65. Keifer J, Zheng Z (2015) Coincidence detection in a neural correlate of classical conditioning is initiated by bidirectional 3-phosphoinositide-dependent kinase-1 signalling and modulated by adenosine receptors. J Physiol 593:1581–1595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Moore JW, Desmond JE, Berthier NE (1989) Adaptively timed conditioned responses and the cerebellum: a neural network. Approach Biol Cybern 62:17–28

    Article  PubMed  CAS  Google Scholar 

  67. Anderson CW, Keifer J (1999) Properties of conditioned abducens nerve responses in a highly reduced in vitro brain stem preparation from the turtle. J Neurophysiol 81:1242–1250

    Article  PubMed  CAS  Google Scholar 

  68. Garcia KS, Mauk MD (1998) Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology 37:471–480

    Article  PubMed  CAS  Google Scholar 

  69. Kalmbach BE, Davis T, Ohyama T, Riusech F, Nores WL, Mauk MD (2010) Cerebellar cortex contributions to the expression and timing of conditioned eyelid responses. J Neurophysiol 103:2039–2049

    Article  PubMed  PubMed Central  Google Scholar 

  70. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    Article  PubMed  CAS  Google Scholar 

  71. Koekkoek SKE, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJH, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736–1739

    Article  PubMed  CAS  Google Scholar 

  72. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919–3931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Svensson P, Jirenhed DA, Bengtsson F, Hesslow G (2010) Effect of conditioned stimulus parameters on timing of conditioned Purkinje cell responses. J Neurophysiol 103:1329–1336

    Article  PubMed  Google Scholar 

  74. Maas RPPWM, Schutter DJLG, Toni I, Timmann D, van de Warrenburg BPC (2022) Cerebellar transcranial direct current stimulation modulates timing but not acquisition of conditioned eyeblink responses in SCA3 patients. Brain Stimulation 15:806–813

    Article  PubMed  Google Scholar 

  75. Choquet D (2018) Linking nanoscale dynamics of AMPA receptor organization to plasticity of excitatory synapses and learning. J Neurosci 38:9318–9329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Diering GH, Huganir RL (2018) The AMPA receptor code of synaptic plasticity. Neuron 100:314–329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Keifer J (2022) Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 100:979–991

    Article  PubMed  CAS  Google Scholar 

  78. Keifer J (2001) In vitro eye-blink classical conditioning is NMDA receptor-dependent and involves redistribution of AMPA receptor subunit GluR4. J Neurosci 21:2434–2441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Keifer J, Clark TG (2003) Abducens conditioning in in vitro turtle brain stem without cerebellum requires NMDA receptors and involves upregulation of GluR4 containing AMPA receptors. Exp Brain Res 151:405–410

    Article  PubMed  CAS  Google Scholar 

  80. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  81. Nicoll RA, Roche KW (2013) Long-term potentiation: peeling the onion. Neuropharmacol 74:18–22

    Article  CAS  Google Scholar 

  82. Hayashi Y (2022) Molecular mechanism of hippocampal long-term potentiation – towards multiscale understanding of learning and memory. Neurosci Res 175:3–15

    Article  PubMed  CAS  Google Scholar 

  83. Servatius RJ, Shors TJ (1996) Early acquisition, but not retention, of the classically conditioned eyeblink response is N-methyl-D-aspartate (NMDA) receptor dependent. Behav Neurosci 110:1040–1048

    Article  PubMed  CAS  Google Scholar 

  84. Kishimoto Y, Kawahara S, Kirino Y, Kadotani H, Nakamura Y, Ikeda M, Yoshioka T (1997) Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A. Neuroreport 8:3717–3721

    Article  PubMed  CAS  Google Scholar 

  85. Tocco G, Devgan KK, Hauge SA, Weiss C, Baudry M, Thompson RF (1991) Classical conditioning selectively increases AMPA receptor binding in rabbit hippocampus. Brain Res 559:331–336

    Article  PubMed  CAS  Google Scholar 

  86. Hauge SA, Tracy JA, Baudry M, Thompson RF (1998) Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response. Brain Res 803:9–18

    Article  PubMed  CAS  Google Scholar 

  87. Mokin M, Keifer J (2004) Targeting of GluR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning. Neurosci 128:219–228

    Article  CAS  Google Scholar 

  88. Mokin M, Keifer J (2006) Quantitative analysis of immune fluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157:218–224

    Article  PubMed  CAS  Google Scholar 

  89. Mokin M, Lindahl JS, Keifer J (2006) Immediate-early gene-encoded protein arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning. J Neurophysiol 95:215–224

    Article  PubMed  CAS  Google Scholar 

  90. Rao A, Craig AM (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19:801–812

    Article  PubMed  CAS  Google Scholar 

  91. Liao D, Zhang X, O’Brian R, Ehlers MD, Huganir RL (1999) Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2:37–43

    Article  PubMed  CAS  Google Scholar 

  92. Liao D, Scannevin RH, Huganir R (2001) Activation of silent synapses by rapid activity-dependent synaptic recruitment of AMPA receptors. J Neurosci 21:6008–6017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Lissin DV, Carroll RC, Nicoll RA, Malenka RC, Von Zastrow M (1999) Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J Neurosci 19:1263–1272

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zheng Z, Keifer J (2009) PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning. J Neurophysiol 101:2539–2549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zheng Z, Keifer J (2014) Sequential delivery of synaptic GluA1 and GluA4-containing AMPARs by SAP97 anchored protein complexes in classical conditioning. J Biol Chem 289:10540–10550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Keifer J, Tiwari NK, Buse L, Zheng Z (2017) Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPγ8 and GSG1L in classical conditioning. Neurosci Lett 645:53–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–434

    Article  PubMed  CAS  Google Scholar 

  98. Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375:400–404

    Article  PubMed  CAS  Google Scholar 

  99. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816

    Article  PubMed  CAS  Google Scholar 

  100. Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343

    Article  PubMed  CAS  Google Scholar 

  101. Diaz-Alonso J, Sun YJ, Granger AJ, Levy JM, Blankenship SM, Nicoll RA (2017) Subunit-specific role for the amino-terminal domain of AMPA receptors in synaptic targeting. Proc Nat Acad Sci USA 114:7136–7141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhou Z, Liu A, Xia S, Leung C, Qi J, Meng Y, Xie W, Park P, Collingridge GL, Jia Z (2018) The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nat Neurosci 21:50–62

    Article  PubMed  CAS  Google Scholar 

  103. Adesnik H, Nicoll RA (2007) Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation. J Neurosci 27:4598–4602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88

    Article  PubMed  CAS  Google Scholar 

  105. Clem R, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330:1108–1112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Penn AC, Zhang CL, Georges F, Rover L, Breillat C, Hosy E, Petersen JD, Humeau Y, Choquet D (2017) Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549:384–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Mokin M, Zheng Z, Keifer J (2007) Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning. J Neurophysiol 98:1278–1286

    Article  PubMed  CAS  Google Scholar 

  108. Keifer J, Zheng Z (2010) AMPA receptor trafficking and learning. Eur J Neurosci 32:269–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Keifer J, Houk JC (2011) Modeling signal transduction in classical conditioning with network motifs. Front Mol Neurosci 4:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  111. Li W, Keifer J (2008) Coordinate action of pre- and postsynaptic brain-derived neurotrophic factor is required for AMPAR trafficking and acquisition of in vitro classical conditioning. Neuroscience 155:686–697

    Article  PubMed  CAS  Google Scholar 

  112. Li W, Keifer J (2009) BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK. Neurobiol Learn & Mem 91:243–249

    Article  CAS  Google Scholar 

  113. Keifer J, Sabirzhanov BE, Zheng Z, Li W, Clark TG (2009) Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning. J Neurosci 29:14956–14964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ambigapathy G, Zheng Z, Keifer J (2015) Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning. Epigenetics 10:981–993

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ambigapathy G, Zheng Z, Keifer J (2013) Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans. PLoS One 8:e67141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Keifer J, Zheng Z, Zhu D (2007) MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning. J Neurophysiol 97:2067–2074

    Article  PubMed  CAS  Google Scholar 

  117. Sharma SK, Sheriff CM, Stough S, Hsuan V, Carew TJ (2006) A tropomyosin-related kinase B ligand is required for ERK activation, long-term synaptic facilitation, and long-term memory in Aplysia. Proc Natl Acad Sci USA 103:14206–14210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Rupersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059–1062

    Article  PubMed  CAS  Google Scholar 

  119. Pilati N, Linley DM, Selvaskanden H, Uchitel O, Henning MH, Kopp-Scheinpflug C, Forsythe ID (2016) Acoustic trauma slows AMPA receptor-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function. J Physiol 594:3683–3703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zheng Z, Keifer J (2008) Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning. Neuroscience 156:872–884

    Article  PubMed  CAS  Google Scholar 

  121. Lisman J, Raghavachari S (2006) A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci STKE 356:re11

    Google Scholar 

  122. Opazo P, Sainlos M, Choquet D (2012) Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr Opin Neurobiol 22:453–460

    Article  PubMed  CAS  Google Scholar 

  123. Chater TE, Goda Y (2022) The shaping of AMPA receptor surface distribution by neuronal activity. Front Syn Neurosci 14:833782

    Article  CAS  Google Scholar 

  124. Humeau Y, Reisel D, Johnson AW, Borchardt T, Jensen V, Gebhardt BV, Gass P, Bannerman DM, Good MA, Hvalby O, Sprengel R, Luthi A (2007) A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J Neurosci 27:10947–10956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nedelescu H, Kelso CM, Lazaro-Munoz G, Purpura M, Cain CK, LeDoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518:4723–4739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wong W, Scott JD (2004) AKAP signaling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  PubMed  CAS  Google Scholar 

  127. Nie T, McDonough CB, Huang T, Nguyen PV, Abel T (2007) Genetic disruption of protein kinase A anchoring reveals a role for compartmentalized kinase signaling in theta-burst long-term potentiation and spatial memory. J Neurosci 27:10278–10288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Purkey AM, Woolfrey KM, Crosby KC, Chick WS, Aoto J, Dell’Acqua ML (2018) AKAP150 palmitoylation regulates synaptic incorporation of Ca2-permeable AMPA receptors to control LTP. Cell Rep 25:974–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Shalin SC, Hernandez CM, Dougherty MK, Morrison DK, Sweatt JD (2006) Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation. Neuron 50:765–779

    Article  PubMed  CAS  Google Scholar 

  130. Jackson AC, Nicoll RA (2011) The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70:178–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Schwenk J, Harmel N, Brechet A, Zolles G, Berkefeld H, Swantje Muller C, Bildl W, Baehrens D, Huber B, Kulik A, Klocker N, Schulte U, Fakler B (2012) High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron 74:621–633

    Article  PubMed  CAS  Google Scholar 

  132. Keifer J, Zheng Z, Mokin M (2008) Synaptic localization of GluR4-containing AMPARs and Arc during acquisition, extinction and reacquisition of in vitro classical conditioning. Neurobiol Learn Mem 90:301–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Zheng Z, Ambigapathy G, Keifer J (2019) Characterization and transcriptional activation of the immediate early gene ARC during a neural correlate of classical conditioning. J Mol Neurosci 69:380–390

    Article  PubMed  CAS  Google Scholar 

  134. Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Rial Verde EM, Lee-Osbourne J, Worley PF, Malinow R, Cline HT (2006) Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52:461–474

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wall MJ, Collins DR, Chery SL, Allen ZD, Patuzyn ED, George AJ, Nikolova VD, Moy SS, Philpot BD, Shepherd JD, Muller J, Ehlers MD, Am M, Correa SAL (2018) The temporal dynamics of Arc expression regulate cognitive flexibility. Neuron 98:1124–1132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ambigapathy G, Zheng Z, Keifer J (2014) Genomic organization and identification of promoter regions for the BDNF gene in the pond turtle Trachemys scripta elegans. J Mol Neurosci 53:626–636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kaas GA, Zhong C, Eason DE, Ross DL, Vachhani RV, Ming G, King JR, Song H, Sweatt JD (2013) Tet1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79:1086–1093

    Article  PubMed  CAS  Google Scholar 

  139. Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, Faull KF, Jaenisch R, Tsai L-H (2013) Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79:1109–1122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Feng J, Shao N, Szulwach KE, Vialou V, Huynh J, Zhong C, Le T, Ferguson D et al (2015) Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat Neurosci 18:536–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Harikumar A, Meshorer E (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep 16:1609–1619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30:3589–3599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zheng Z, Ambigapathy G, Keifer J (2017) MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in turtle. eLife 6:e25384

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zheng Z, Keifer J (2021) Learning-dependent transcription regulation of BDNF by its truncated protein isoform in turtle. J Mol Neurosci 71:999–1014

    Article  PubMed  CAS  Google Scholar 

  148. Keifer J (2021) Comparative genomics of the BDNF gene, non-canonical modes of transcriptional regulation, and neurological disease. Mol Neurobiol 58:2851–2861

    Article  PubMed  CAS  Google Scholar 

  149. Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemburg M, Hong EJ, Markenscoff-Papadimitriou E, Bear DM, Greenberg ME (2008) Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60:1022–1038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M (2003) Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J Neurosci 23:6327–6337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Niibori Y, Hayashi F, Hirai K, Matsui M, Inokuchi K (2007) Alternative poly(A) site-selection regulates the production of alternatively spliced vesl-1/homer1 isoforms that encode postsynaptic scaffolding proteins. Neurosci Res 57:399–410

    Article  PubMed  CAS  Google Scholar 

  152. Liu Q-R, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ, de Andrade M, Bower JH, Maragonore DM, Uhl GR (2005) Human brain derived neurotrophic factor (BDNF) genes, splicing pattern, and assessments of associations with substance abuse and Parkinson’s disease. Am J Med Genet Pt B 134B:93–103

    Article  Google Scholar 

  153. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90:397–406

    Article  PubMed  CAS  Google Scholar 

  154. Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H, Loeb JA (2012) Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192:1133–1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Modarresi F, Faghihi MA, Lopez-Toledano A, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotech 30:453–459

    Article  CAS  Google Scholar 

  156. Modarresi F, Fatemi RP, Razavipour SF, Ricciardi N, Makhmutova M, Khoury N, Magistri M, Volmar C-H, Wahlestedt C, Faghihi MA (2021) A novel knockout mouse model of the noncoding antisense brain-derived neurotrophic factor (Bdnf) gene displays increased endogenous Bdnf protein and improved memory function following exercise. Heliyon 7:e07570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59:201–220

    Article  PubMed  CAS  Google Scholar 

  158. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Disc 10:209–219

    Article  CAS  Google Scholar 

  159. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  160. Keifer J (2017) Primetime for learning genes. Genes 8:69

    Article  PubMed  PubMed Central  Google Scholar 

  161. Koo JW, Mazei-Robison MS, LaPlant Q, Egervari G, Braunscheidel KM, Adank DN, Ferguson D, Feng J et al (2015) Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci 18:415–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Palomer E, Martin-Segura A, Baliyan S, Ahmed T, Balschun D, Venero C, Martin MG, Dotti CG (2016) Aging triggers a repressive chromatin state at Bdnf promoters in hippocampal neurons. Cell Rep 16:2889–2900

    Article  PubMed  CAS  Google Scholar 

  163. Keifer J, Summers CH (2016) Putting the “biology” back into “neurobiology”: the strength of diversity in animal model systems for neuroscience research. Front Syst Neurosci 10:69

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded for many years by the National Institutes of Health (NINDS, NIMH) and the National Science Foundation to J.K.

Author information

Authors and Affiliations

Authors

Contributions

JK conceptualized and wrote the paper.

Corresponding author

Correspondence to Joyce Keifer.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent for Publication

NA.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keifer, J. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Mol Neurobiol 60, 7088–7103 (2023). https://doi.org/10.1007/s12035-023-03528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03528-z

Keywords

Navigation