Skip to main content

Advertisement

Log in

Presence of Extracellular Alpha-Synuclein Aggregates Trigger Astrocytic Degeneration Through Enhanced Membrane Rigidity and Deregulation of Store-Operated Calcium Entry (SOCE) into the Endoplasmic Reticulum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

α-Synuclein has a critical role in Parkinson’s disease, but the mechanism of how extracellular α-synuclein aggregates lead to astrocytic degeneration remains unknown. Our recent study in astrocytes highlighted that α-synuclein aggregates undergo lower endocytosis than the monomeric-form, even while displaying a higher impact on glutathione-machinery and glutamate-metabolism under sublethal conditions. As optimal intracellular calcium levels are essential for these functions, we aimed to study the effect of extracellular α-synuclein aggregates on ER calcium entry. We assessed the association of extracellular aggregated-α-synuclein (WT and A30P/A53T double-mutant) with the astrocytic membrane (lipid rafts) and studied its effects on membrane fluidity, ER stress, and ER calcium refilling in three systems—purified rat primary midbrain astrocyte culture, human iPSC-derived astrocytes, and U87 cells. The corresponding timeline effect on mitochondrial membrane potential was also evaluated. Post-24 h exposure to extracellular WT and mutant α-synuclein aggregates, fluorescence-based studies showed a significant increase in astrocyte membrane rigidity over control, with membrane association being significantly higher for the double mutant aggregates. α-Synuclein aggregates also showed preferentially higher association with lipid rafts of astrocytic membrane. A simultaneous increase in ER stress markers (phosphorylated PERK and CHOP) with significantly higher SOCE was also observed in aggregate-treated astrocytes, with higher levels for double mutant variant. These observations correlate with increased expression of SOCE markers, especially Orai3, on plasma membrane. Alterations in mitochondrial membrane potential were only noted post-48 h of exposure to α-synuclein aggregates. We therefore suggest that in astrocytes, α-synuclein-aggregates preferentially associate with lipid rafts of membrane, altering membrane fluidity and consequently inducing ER stress mediated by interaction with membrane SOCE proteins, resulting in higher Ca2+ entry. A distinct cascade of events of sequential impairment of ER followed by mitochondrial alteration is observed. The study provides novel evidence elucidating relationships between extracellular α-synuclein aggregates and organellar stress in astrocytes and indicates the therapeutic potential in targeting the association of α-synuclein aggregates with astrocytic membrane.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Brás IC, Outeiro TF (2021) Alpha-synuclein: mechanisms of release and pathology progression in synucleinopathies. Cells [Internet]. 10(2):375. Available from: https://www.mdpi.com/2073-4409/10/2/375

  2. El‐Agnaf OMA, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA et al (2006) Detection of oligomeric forms of α‐synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J [Internet]. 20(3):419–25. Available from: https://onlinelibrary.wiley.com/doi/10.1096/fj.03-1449com

  3. Sierks MR, Chatterjee G, McGraw C, Kasturirangan S, Schulz P, Prasad S (2011) CSF levels of oligomeric alpha-synuclein and beta-amyloid as biomarkers for neurodegenerative disease. Integr Biol [Internet]. 3(12):1188–96. Available from: https://academic.oup.com/ib/article/3/12/1188/5214112

  4. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Sastre M, Del Tredici K (2007) Development of α-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114:231–241

    Article  CAS  PubMed  Google Scholar 

  6. Parnetti L, Gaetani L, Eusebi P, Paciotti S, Hansson O, El-Agnaf O et al (2019) CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol [Internet]. 18(6):573–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474442219300249

  7. Jang A, Lee H-J, Suk J-E, Jung J-W, Kim K-P, Lee S-J (2010) Non-classical exocytosis of α-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem [Internet]. 113(5):1263–74. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2010.06695.x

  8. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of α-synuclein and its aggregates. J Neurosci 25(25):6016–6024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee H-J, Suk J-E, Patrick C, Bae E-J, Cho J-H, Rho S et al (2010) Direct Transfer of α-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem [Internet]. 285(12):9262–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021925820873207

  10. de Boni L, Watson AH, Zaccagnini L, Wallis A, Zhelcheska K, Kim N et al (2022) Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by α-synuclein conformations. Acta Neuropathol [Internet]. 143(4):453–69. Available from: https://link.springer.com/10.1007/s00401-022-02406-7

  11. Monsellier E, Bousset L, Melki R (2016) α-Synuclein and huntingtin exon 1 amyloid fibrils bind laterally to the cellular membrane. Sci Rep [Internet]. 6(1):19180. Available from: https://www.nature.com/articles/srep19180

  12. Morales I, Sanchez A, Rodriguez-Sabate C, Rodriguez M (2017) Striatal astrocytes engulf dopaminergic debris in Parkinson’s disease: a study in an animal model. PLoS One 12(10):1–24

    Article  Google Scholar 

  13. Diniz LP, Matias I, Bérgamo AP, Garcia AMN, Fernanda GQ, Barros-Aragão et al (2019) α-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson’s disease model. J Neurochem 150(2):138–57

    Article  CAS  PubMed  Google Scholar 

  14. Raj A, Kaushal A, Datta I (2022) Impact of monomeric and aggregated wild‐type and A30P/A53T double‐mutant α‐synuclein on antioxidant mechanism and glutamate metabolic profile of cultured astrocytes. J Neurosci Res [Internet]. 100(2):681–706. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jnr.24994

  15. Chavarría C, Rodríguez-Bottero S, Quijano C, Cassina P, Souza JM (2018) Impact of monomeric, oligomeric and fibrillar alpha-synuclein on astrocyte reactivity and toxicity to neurons. Biochem J 475(19):3153–3169

    Article  PubMed  Google Scholar 

  16. Loria F, Vargas JY, Bousset L, Syan S, Salles A, Melki R et al (2017) α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134(5):789–808

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L et al (2021) Alpha-synuclein research: defining strategic moves in the battle against Parkinson’s disease. npj Park Dis [Internet]. 7(1):65. Available from: http://www.nature.com/articles/s41531-021-00203-9

  18. Fields CR, Bengoa-Vergniory N, Wade-Martins R (2019) Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci [Internet]. 12(December):1–14. Available from: https://www.frontiersin.org/article/10.3389/fnmol.2019.00299/full

  19. Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP et al (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci [Internet]. 22(7):1099–109. Available from: http://www.nature.com/articles/s41593-019-0423-2

  20. Lee JH, Han J, Kim H, Park SM, Joe E, Jou I (2019) Parkinson’s disease-associated LRRK2-G2019S mutant acts through regulation of SERCA activity to control ER stress in astrocytes. Acta Neuropathol Commun [Internet]. 7(1):68. Available from: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0716-4

  21. Wang Y, Chen Y, Zhou Q, Xu J, Qian Q, Ni P et al (2018) Mild endoplasmic reticulum stress protects against lipopolysaccharide-induced astrocytic activation and blood-brain barrier hyperpermeability. Front Cell Neurosci [Internet]. 12. Available from: https://www.frontiersin.org/article/10.3389/fncel.2018.00222/full

  22. Sims SG, Cisney RN, Lipscomb MM, Meares GP (2022) The role of endoplasmic reticulum stress in astrocytes. Glia [Internet]. 70(1):5–19. Available from: https://onlinelibrary.wiley.com/doi/10.1002/glia.24082

  23. Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS et al (2006) Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem [Internet]. 281(34):24979–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16807233

  24. Kwon J, An H, Sa M, Won J, Shin JI, Lee CJ (2017) Orai1 and Orai3 in Combination with Stim1 mediate the majority of store-operated calcium entry in astrocytes. Exp Neurobiol [Internet]. 26(1):42–54. Available from: http://www.en-journal.org/journal/view.html?doi=10.5607/en.2017.26.1.42

  25. Teshima A, Yamamoto K, Yamaoka YK (2000) Involvement of calcium ion in elevation of mRNA for γ-glutamylcysteine synthetase (γ-GCS) induced by low-dose γ-rays. Int J Radiat Biol [Internet]. 76(12):1631–9. Available from: http://www.tandfonline.com/doi/full/10.1080/09553000050201127

  26. Pi J, Bai Y, Reece JM, Williams J, Liu D, Freeman ML et al (2007) Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic Biol Med [Internet]. 42(12):1797–806. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584907001761

  27. Freeman D, Cedillos R, Choyke S, Lukic Z, Mcguire K, Marvin S et al (2013) Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS One 8(4):1–12

    Article  Google Scholar 

  28. Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS et al (2014) Intranasal administration of alpha-synuclein aggregates: a Parkinson’s disease model with behavioral and neurochemical correlates. Behav Brain Res [Internet] 263:158–168. https://doi.org/10.1016/j.bbr.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  29. Delbridge ARD, Huh D, Brickelmaier M, Burns JC, Roberts C, Challa R et al (2020) Organotypic brain slice culture microglia exhibit molecular similarity to acutely-isolated adult microglia and provide a platform to study neuroinflammation. Front Cell Neurosci [Internet]. 14. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2020.592005/full

  30. Haddjeri-Hopkins A, Tapia M, Ramirez-Franco J, Tell F, Marqueze-Pouey B, Amalric M et al (2021) Refining the identity and role of Kv4 channels in mouse substantia nigra dopaminergic NEurons. eneuro [Internet]. 8(4):ENEURO.0207–21.2021. Available from: https://www.eneuro.org/lookup/doi/10.1523/ENEURO.0207-21.2021

  31. Keksel N, Bussmann H, Unger M, Drewe J, Boonen G, Häberlein H et al (2019) St John’s wort extract influences membrane fluidity and composition of phosphatidylcholine and phosphatidylethanolamine in rat C6 glioblastoma cells. Phytomedicine [Internet]. 54:66–76. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0944711318301995

  32. Jagtap S, Sowmithra, Yadav R, Pal PK, Datta I (2022) Generation of induced pluripotent stem cells (NIMHi004-A, NIMHi005-A and NIMHi006-A) from healthy individuals of Indian ethnicity with no mutation for Parkinson’s disease related genes. Stem Cell Res [Internet]. 60:102716. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1873506122000654

  33. Datta I, Sowmithra Jagtap S, Potdar C, Yadav R, Pal P (2020) Generation of induced pluripotent stem cells (NIMHi001-A) from a Parkinson’s disease patient of East Indian ethnicity carrying LRRK2 I1371V variant. Stem Cell Res [Internet] 44:1–5. https://doi.org/10.1016/j.scr.2020.101768

    Article  CAS  Google Scholar 

  34. Sowmithra S, Jain NK, Datta I (2020) Evaluating in vitro neonatal hypoxic-ischemic injury using neural progenitors derived from human embryonic stem cells. Stem Cells Dev 37:1–50

    Google Scholar 

  35. Frasca JM, Auerbach O, Parks VR, Stoeckenius W (1967) Electron microscopic observations of bronchial epithelium: I. Annulate lamellae Exp Mol Pathol 6:261–273

    Article  CAS  PubMed  Google Scholar 

  36. Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R (2016) Influence of 6-Hydroxydopamine toxicity on α-synuclein phosphorylation, resting vesicle expression, and vesicular dopamine release. Jounal Cell Biochem 9999:1–18

    Google Scholar 

  37. Smith SM (2011) Strategies for the purification of membrane proteins. In: Protein chromatography: methods and protocols [Internet]. 485–96. Available from: http://link.springer.com/10.1007/978-1-60761-913-0_29

  38. Fortin DL, Troyer MD, Nakamura K, Kubo S, M.D. A, Edwards RH (2004) Lipid rafts mediate the synaptic localization of -synuclein. J Neurosci [Internet]. 24(30):6715–23. Available from: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1594-04.2004

  39. Park SJ, Kim HY, Kim H, Park SM, Joe E, Jou I et al (2009) Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free Radic Biol Med [Internet]. 46(12):1694–702. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584909001853

  40. Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M et al (2010) Brain α-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain [Internet]. 133(1):172–88. Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awp282

  41. Barker RA, Williams-Gray CH (2016) Review: the spectrum of clinical features seen with alpha synuclein pathology. Neuropathol Appl Neurobiol [Internet]. 42(1):6–19. Available from: https://onlinelibrary.wiley.com/doi/10.1111/nan.12303

  42. Sorrentino ZA, Giasson BI, Chakrabarty P (2019) α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol [Internet]. 138(1). https://doi.org/10.1007/s00401-019-01977-2

  43. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol [Internet]. 99(1):14–20. Available from: http://link.springer.com/10.1007/PL00007400

  44. Parnetti L, Cicognola C, Eusebi P, Chiasserini D (2016) Value of cerebrospinal fluid α-synuclein species as biomarker in Parkinson’s diagnosis and prognosis. Biomark Med [Internet]. 10(1):35–49. Available from: https://www.futuremedicine.com/doi/10.2217/bmm.15.107

  45. Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R (2020) Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol 11(April):1–15

    Google Scholar 

  46. Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F et al (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or Parkinsonian disorders. Arch Neurol [Internet]. 69(11):1445–52. Available from: http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneurol.2012.1654

  47. Hall S, Surova Y, Öhrfelt A, Blennow K, Zetterberg H, Hansson O (2016) Longitudinal Measurements of cerebrospinal fluid biomarkers in Parkinson’s disease. Mov Disord [Internet]. 31(6):898–905. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mds.26578

  48. Hansson O, Hall S, Öhrfelt A, Zetterberg H, Blennow K, Minthon L et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res Ther [Internet]. 6(3):25. Available from: http://alzres.biomedcentral.com/articles/10.1186/alzrt255

  49. Park MJ, Cheon S-M, Bae H-R, Kim S-H, Kim JW (2011) Elevated levels of α-synuclein oligomer in the cerebrospinal fluid of drug-naïve patients with Parkinson’s disease. J Clin Neurol [Internet]. 7(4):215. Available from: https://www.thejcn.com/DOIx.php?id=10.3988/jcn.2011.7.4.215

  50. Altay MF, Liu AKL, Holton JL, Parkkinen L, Lashuel HA (2022) Prominent astrocytic alpha-synuclein pathology with unique post-translational modification signatures unveiled across Lewy body disorders. Acta Neuropathol Commun [Internet]. 10(1):163. Available from: https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-022-01468-8

  51. Nakamura K, Mori F, Kon T, Tanji K, Miki Y, Tomiyama M et al (2016) Accumulation of phosphorylated α-synuclein in subpial and periventricular astrocytes in multiple system atrophy of long duration. Neuropathology [Internet]. 36(2):157–67. Available from: https://onlinelibrary.wiley.com/doi/10.1111/neup.12243

  52. Song YJC, Halliday GM, Holton JL, Lashley T, O’Sullivan SS, McCann H et al (2009) Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol [Internet]. 68(10):1073–83. Available from: https://academic.oup.com/jnen/article-lookup/doi/10.1097/NEN.0b013e3181b66f1b

  53. Lee H-J, Kim C, Lee S-J (2010) Alpha-Synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev [Internet]. 3(4):283–7. Available from: http://www.hindawi.com/journals/omcl/2010/369805/

  54. Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther [Internet]. 6(5–8):73. Available from: http://alzres.biomedcentral.com/articles/10.1186/s13195-014-0073-2

  55. Abounit S, Bousset L, Loria F, Zhu S, De CF, Pieri L et al (2016) Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 35(19):2120–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lindström V, Gustafsson G, Sanders LH, Howlett EH, Sigvardson J, Kasrayan A et al (2017) Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci [Internet]. 82:143–56. https://doi.org/10.1016/j.mcn.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  57. Wenning GK, Jellinger KA (2005) The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol [Internet]. 109(2):129–40. Available from: http://link.springer.com/10.1007/s00401-004-0935-y

  58. Arai T, Uéda K, Ikeda K, Akiyama H, Haga C, Kondo H et al (1999) Argyrophilic glial inclusions in the midbrain of patients with Parkinson’s disease and diffuse Lewy body disease are immunopositive for NACP/α-synuclein. Neurosci Lett [Internet]. 259(2):83–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304394098008908

  59. Wakabayashi K, Hayashi S, Kakita A, Yamada M, Toyoshima Y, Yoshimoto M et al (1998) Accumulation of α-synuclein/NACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol [Internet]. 96(5):445–52. Available from: http://link.springer.com/10.1007/s004010050918

  60. Hishikawa N, Hashizume Y, Yoshida M, Sobue G (2001) Widespread occurrence of argyrophilic glial inclusions in Parkinson’s disease. Neuropathol Appl Neurobiol [Internet]. 27(5):362–72. Available from: http://doi.wiley.com/10.1046/j.1365-2990.2001.00345.x

  61. Shoji M (2000) Accumulation of NACP/alpha -synuclein in Lewy body disease and multiple system atrophy. J Neurol Neurosurg Psychiatry [Internet]. 68(5):605–8. Available from: https://jnnp.bmj.com/lookup/doi/10.1136/jnnp.68.5.605

  62. Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J et al (2018) α-synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum-Golgi compartment. Mol Med Rep 18(1):322–332

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kilpeläinen T, Julku UH, Svarcbahs R, Myöhänen TT (2019) Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinson´s disease. Sci Rep 9(1):1–13

    Article  Google Scholar 

  64. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB (2007) Aggregated -synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci [Internet]. 27(12):3338–46. Available from: https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0285-07.2007

  65. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I et al (2002) Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68:568–578

    Article  CAS  PubMed  Google Scholar 

  66. Reyes JF, Rey NL, Bousset L, Melki R, Brundin P, Angot E (2013) Alpha-synuclein transfers from neurons to oligodendrocytes. Glia 62(3):387–398

    Article  PubMed  Google Scholar 

  67. Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K (2002) Demonstration of α-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 176(1):98–104

    Article  CAS  PubMed  Google Scholar 

  68. Cavaliere F, Cerf L, Dehay B, Ramos-Gonzalez P, De Giorgi F, Bourdenx M et al (2017) In vitro α-synuclein neurotoxicity and spreading among neurons and astrocytes using Lewy body extracts from Parkinson disease brains. Neurobiol Dis [Internet] 103:101–12. https://doi.org/10.1016/j.nbd.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  69. Mohammad-Beigi H, Aliakbari F, Sahin C, Lomax C, Tawfike A, Schafer NP et al (2019) Oleuropein derivatives from olive fruit extracts reduce α-synuclein fibrillation and oligomer toxicity. J Biol Chem [Internet]. 294(11):4215–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021925820418289

  70. Lobanova E, Whiten D, Ruggeri FS, Taylor CG, Kouli A, Xia Z et al (2022) Imaging protein aggregates in the serum and cerebrospinal fluid in Parkinson’s disease. Brain [Internet]. 145(2):632–43. Available from: https://academic.oup.com/brain/article/145/2/632/6355020

  71. Emin D, Zhang YP, Lobanova E, Miller A, Li X, Xia Z et al (2022) Small soluble α-synuclein aggregates are the toxic species in Parkinson’s disease. Nat Commun [Internet]. 13(1):5512. Available from: https://www.nature.com/articles/s41467-022-33252-6

  72. Rostami J, Holmqvist XS, Lindstro V, Sigvardson J, Westermark GT, Ingelsson M et al (2017) Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. Nature Communications 37(49):11835–11853

    CAS  Google Scholar 

  73. Hua J, Yin N, Xu S, Chen Q, Tao T, Zhang J et al (2019) Enhancing the astrocytic clearance of extracellular α-synuclein aggregates by ginkgolides attenuates neural cell injury. Cell Mol Neurobiol [Internet] 39(7):1017–1028. https://doi.org/10.1007/s10571-019-00696-2

    Article  PubMed  Google Scholar 

  74. Galvagnion C (2017) The role of lipids interacting with α-synuclein in the pathogenesis of Parkinson’s disease. J Parkinsons Dis [Internet]. 7(3):433–50. Available from: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JPD-171103

  75. Azizidoost SH, Babaahmadi-Rezaei H, Nazeri Z, Cheraghzadeh M, Kheirollah A (2021) Impact of Methyl-β-Cyclodextrin and Apolipoprotein A-I on the expression of ATP-binding cassette transporter A1 and Cholesterol depletion in C57BL/6 mice astrocytes. Cell J [Internet]. 23(1):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33650825

  76. Cascella R, Chen SW, Bigi A, Camino JD, Xu CK, Dobson CM et al (2021) The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun [Internet]. 12(1):1814. Available from: https://www.nature.com/articles/s41467-021-21937-3

  77. Das T, Ramezani M, Snead D, Follmer C, Chung P, Lee KY et al (2022) The role of membrane affinity and binding modes in alpha-synuclein regulation of vesicle release and trafficking. Biomolecules [Internet]. 12(12):1816. Available from: https://www.mdpi.com/2218-273X/12/12/1816

  78. St-Pierre M-K, Carrier M, González Ibáñez F, Khakpour M, Wallman M-J, Parent M et al (2023) Astrocytes display ultrastructural alterations and heterogeneity in the hippocampus of aged APP-PS1 mice and human post-mortem brain samples. J Neuroinflammation [Internet]. 20(1):73. Available from: https://jneuroinflammation.biomedcentral.com/articles/https://doi.org/10.1186/s12974-023-02752-7

  79. Unruh C, Van Bavel N, Anikovskiy M, Prenner EJ (2020) Benefits and Detriments of gadolinium from medical advances to health and ecological risks. Molecules [Internet]. 25(23):5762. Available from: https://www.mdpi.com/1420-3049/25/23/5762

  80. Granatiero V, Konrad C, Bredvik K, Manfredi G, Kawamata H (2019) Nrf2 signaling links ER oxidative protein folding and calcium homeostasis in health and disease. Life Sci Alliance [Internet]. 2(5):e201900563. Available from: https://www.life-science-alliance.org/lookup/doi/10.26508/lsa.201900563

  81. Kovaleva V, Saarma M (2021) Endoplasmic reticulum stress regulators: new drug targets for Parkinson’s disease. J Parkinsons Dis [Internet]. 11(s2):S219–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34180421

  82. Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev [Internet]. 85(2):757–810. Available from: https://www.physiology.org/doi/10.1152/physrev.00057.2003

  83. Chen W, Shao J, Huang Y, Chen E, Huang M, Han F et al (2019) New β-carboline fluorophores with superior sensitivity and endoplasmic reticulum specificity for tracking ER changes. Chem Commun [Internet]. 55(51):7327–30. Available from: http://xlink.rsc.org/?DOI=C9CC03370J

  84. Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Scheper W (2012) Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener Dis [Internet]. 10(1–4):212–5. Available from: https://www.karger.com/Article/FullText/334536

  85. Nijholt DAT, de Graaf TR, van Haastert ES, Oliveira AO, Berkers CR, Zwart R et al (2011) Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ [Internet]. 18(6):1071–81. Available from: https://www.nature.com/articles/cdd2010176

  86. Nijholt DA, van Haastert ES, Rozemuller AJ, Scheper W, Hoozemans JJ (2012) The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol [Internet]. 226(5):693–702. Available from: https://onlinelibrary.wiley.com/doi/10.1002/path.3969

  87. Grochowska MM, Carreras Mascaro A, Boumeester V, Natale D, Breedveld GJ, Geut H et al (2021) LRP10 interacts with SORL1 in the intracellular vesicle trafficking pathway in non-neuronal brain cells and localises to Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol [Internet]. 142(1):117–37. Available from: https://link.springer.com/10.1007/s00401-021-02313-3

  88. Slodzinski H, Moran LB, Michael GJ, Wang B, Novoselov S, Cheetham ME et al (2009) Homocysteine-induced endoplasmic reticulum protein (herp) is up-regulated in parkinsonian substantia nigra and present in the core of Lewy bodies. Clin Neuropathol [Internet]. 28(5):333–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19788048

  89. Kovacs GG, Breydo L, Green R, Kis V, Puska G, Lőrincz P et al (2014) Intracellular processing of disease-associated α-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiol Dis [Internet]. 69:76–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996114001387

  90. Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A et al (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol [Internet]. 67(3):200–11. Available from: https://academic.oup.com/jnen/article-lookup/doi/10.1097/NEN.0b013e318165b239

  91. Liu M, Qin L, Wang L, Tan J, Zhang H, Tang J et al (2018) α‑synuclein induces apoptosis of astrocytes by causing dysfunction of the endoplasmic reticulum‑Golgi compartment. Mol Med Rep [Internet]. Available from: http://www.spandidos-publications.com/10.3892/mmr.2018.9002

  92. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci [Internet]. 73(1):79–94. Available from: http://link.springer.com/10.1007/s00018-015-2052-6

  93. Liu Y, Kintner DB, Begum G, Algharabli J, Cengiz P, Shull GE et al (2010) Endoplasmic reticulum Ca2+ signaling and mitochondrial Cyt c release in astrocytes following oxygen and glucose deprivation. J Neurochem [Internet]; Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2010.06862.x

  94. Simons K, Sampaio JL (2011) Membrane Organization and Lipid Rafts. Cold Spring Harb Perspect Biol [Internet]. 3(10):a004697–a004697. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a004697

Download references

Acknowledgements

We acknowledge the support of Vice Chancellor and Registrar of NIMHANS, Bengaluru, for extending infrastructure facilities for the present work. We acknowledge Prof. V. Ravi and Dr. Manjunath, Department of Neurovirology, NIMHANS for access to Advanced Flow Cytometer facility. We acknowledge Mr. Girish Waghmare, Junior Scientific Officer, Biophysics Department, for his skilled help in obtaining the brain slices using vibratome. We acknowledge Prof. Colin Jamora, NCBS, for his valuable scientific inputs and Prof. Ramesh Bhonde for his critical comments.

Funding

This work is supported by a grant obtained from Department of Biotechnology (DBT), Government of India, New Delhi; contract grant No. BT/PR21526/MED/122/49/2016. AR is supported by DST-INSPIRE Ph.D. fellowship. RB is supported by UGC NET-JRF.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.D; methodology: I.D and A.R; formal analysis and investigation: A.R, R.B, R.S, and C.S; writing—original draft preparation: A.R; writing—review and editing: I.D; funding acquisition: I.D; resources: I.D and C.S; supervision: I.D and C.S. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Indrani Datta.

Ethics declarations

Ethical Approval

Approval of Institutional Animal Ethics Committee (IAEC) of National Institute of Mental Health and Neuro Sciences (NIMHANS) was obtained for all animal experiments (IAEC reference no. AEC/70/456/B.P and AEC/70/455/B.P.). Established and previously published hiPSC line was used for this study. The hiPSC line used is already established and published previously. For the hiPSCs differentiation to astrocytes, approval was obtained from Institutional Committee for Stem Cell Research (IC-SCR) with the IC-SCR no. SEC/05/030/BP.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4014 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Banerjee, R., Santhoshkumar, R. et al. Presence of Extracellular Alpha-Synuclein Aggregates Trigger Astrocytic Degeneration Through Enhanced Membrane Rigidity and Deregulation of Store-Operated Calcium Entry (SOCE) into the Endoplasmic Reticulum. Mol Neurobiol 60, 5309–5329 (2023). https://doi.org/10.1007/s12035-023-03400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03400-0

Keywords

Navigation