Skip to main content

Advertisement

Log in

Cholecystokinin Signaling can Rescue Cognition and Synaptic Plasticity in the APP/PS1 Mouse Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Synaptic impairment and loss are an important pathological feature of Alzheimer's disease (AD). Memory is stored in neural networks through changes in synaptic activity, and synaptic dysfunction can cause cognitive dysfunction and memory loss. Cholecystokinin (CCK) is one of the major neuropeptides in the brain, and plays a role as a neurotransmitter and growth factor. The level of CCK in the cerebrospinal fluid is decreased in AD patients. In this study, a novel CCK analogue was synthesized on the basis of preserving the minimum bioactive fragment of endogenous CCK to investigate whether the novel CCK analogue could improve synaptic plasticity in the hippocampus of the APP/PS1 transgenic mouse model of AD and its possible molecular biological mechanism. Our study found that the CCK analogue could effectively improve spatial learning and memory, enhance synaptic plasticity in the hippocampus, normalize synapse numbers and morphology and the levels of key synaptic proteins, up-regulate the PI3K/Akt signaling pathway and normalize PKA, CREB, BDNF and TrkB receptor levels in APP/PS1 mice. The amyloid plaque load in the brain was reduced by CCK, too. The use of a CCKB receptor antagonist and targeted knockdown of the CCKB receptor (CCKBR) attenuated the neuroprotective effect of the CCK analogue. These results demonstrate that the neuroprotective effect of CCK analogue is achieved by activating the PI3K/Akt as well as the PKA/CREB-BDNF/TrkB signaling pathway that leads to protection of synapses and cognition.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

This article does not contain any studies with human participants performed by any of the authors.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid β-protein

APP:

Amyloid precursor protein

PS1:

Presenilin-1

CCK:

Cholecystokinin

CCKAR:

Cholecystokinin A receptor

CCKBR:

Cholecystokinin B receptor

CCKR:

Cholecystokinin B receptor

PI3K:

Phosphatidylinositol 3-kinase

AKT:

Protein kinase B

PKA:

Protein kinase A

CREB:

CAMP-response element binding protein

BDNF:

Brain-derived neurotrophic factor

TrkB:

Tyrosine Kinase receptor B

MAP-2:

Microtubule associated protein 2

PSD95:

Postsynaptic density95

Syn:

Synapsin

NMDAR:

N-methyl-D-aspartate receptor

LTP:

Long-term potentiation

fEPSP:

Field excitatory postsynaptic potential

TEM:

Transmission electron microscopy

References

  1. Karikari TK, Andreja E, Agathe V, Juan L-R, Ashton NJ, Gregorič KM, Julien D, Claire H et al (2021) Head-to-head comparison of clinical performance of CSF phospho-tau T181 and T217 biomarkers for Alzheimer’s disease diagnosis. Alzheimers Dement 17(5):755–767. https://doi.org/10.1002/alz.12236

    Article  CAS  PubMed  Google Scholar 

  2. Xianqiang S, Morten J, Vishwanath J, Stein RA, Chia-Hsueh L, Mchaourab HS, Shaw DE, Eric G (2018) Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature 556(7702):515–519. https://doi.org/10.1038/s41586-018-0039-9

    Article  CAS  Google Scholar 

  3. Yuanyuan Mi, Mikhail K, Misha T (2017) Synaptic Correlates of Working Memory Capacity. Neuron 93(2):323–330. https://doi.org/10.1016/j.neuron.2016.12.004

    Article  CAS  Google Scholar 

  4. Shijie S, Xinming W, Vasyl S, Weeber EJ, Juan S-R (2014) In vivo administration of granulocyte colony-stimulating factor restores long-term depression in hippocampal slices prepared from transgenic APP/PS1 mice. J Neurosci Res 92(8):975–980. https://doi.org/10.1002/jnr.23378

    Article  CAS  Google Scholar 

  5. Albin J, Hemachandra RP (2021) Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta P-tau and mitochondria. Ageing Res Rev 65(undefined):101208. https://doi.org/10.1016/j.arr.2020.101208

    Article  CAS  Google Scholar 

  6. Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT et al (2017) The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 18(6):undefined. https://doi.org/10.3390/ijms18061319

  7. Jinping L, Lirong C, Francesco R, Almeida Osborne FX, Xiulai G, Xiaomin W, Yew DT, Yan Wu (2010) Amyloid-β induces caspase-dependent loss of PSD-95 and synaptophysin through NMDA receptors. J Alzheimers Dis 22(2):541–556. https://doi.org/10.3233/JAD-2010-100948

    Article  CAS  Google Scholar 

  8. Duygu G-A, Atasoy İL, Esin C, Merve A, Erdinç D (2018) The Transcriptional Regulatory Properties of Amyloid Beta 1–42 may Include Regulation of Genes Related to Neurodegeneration. Neuromolecular Med 20(3):363–375. https://doi.org/10.1007/s12017-018-8498-6

    Article  CAS  Google Scholar 

  9. Kazuaki N, Kiyoshi Y, Naofumi I, Kazuhiko B, Kenya S, Yasuki A, Haruki N, Kentaro T et al (2022) Oestrogen-dependent hypothalamic oxytocin expression with changes in feeding and body weight in female rats. Commun Biol 5(1):912. https://doi.org/10.1038/s42003-022-03889-6

    Article  CAS  Google Scholar 

  10. Rehfeld JF (2017) Cholecystokinin-From Local Gut Hormone to Ubiquitous Messenger. Front Endocrinol (Lausanne) 8:47. https://doi.org/10.3389/fendo.2017.00047

    Article  PubMed  Google Scholar 

  11. Lee SY, Soltesz I (2011) Cholecystokinin: a multi-functional molecular switch of neuronal circuits. Dev Neurobiol 71:83–91. https://doi.org/10.1002/dneu.20815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rehfeld JF (2016) Cholecystokinin expression in tumors: biogenetic and diagnostic implications. Future Oncol 12(18):2135–2147. https://doi.org/10.2217/fon-2015-0053

    Article  CAS  PubMed  Google Scholar 

  13. Hwang CK, Kim DK, Chun HS (2013) Cholecystokinin-8 induces brain-derived neurotrophic factor expression in noradrenergic neuronal cells. Neuropeptides 47(4):245–250

    Article  CAS  PubMed  Google Scholar 

  14. Tirassa P, Costa N (2007) CCK-8 induces NGF and BDNF synthesis and modulates TrkA and TrkB expression in the rat hippocampus and septum: Effects on kindling development. Neurochem Int 50(1):130–138

    Article  CAS  PubMed  Google Scholar 

  15. Su Y et al (2022) Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and alpha-synuclein accumulation in the colon of two Parkinson’s disease mouse models. Eur J Pharmacol 926:175029

    Article  CAS  PubMed  Google Scholar 

  16. Nagahara AH, Mateling M, Kovacs I, Wang L, Eggert S, Rockenstein E, Koo EH, Masliah E et al (2013) Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci 33:15596–15602. https://doi.org/10.1523/JNEUROSCI.5195-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW et al (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106:13594–13599. https://doi.org/10.1073/pnas.0901402106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tirassa P et al (2002) Cholecystokinin-8 and nerve growth factor: two endogenous molecules working for the upkeep and repair of the nervous system. Curr Drug Targets CNS Neurol Disord 1(5):495–510

    Article  CAS  PubMed  Google Scholar 

  19. Whissell PD, Bang JY, Khan I, Xie YF, Parfitt GM, Grenon M, Plummer NW, Jensen P, Bonin RP, Kim JC (2019) Selective activation of Cholecystokinin-Expressing GABA (CCK-GABA) Neurons enhances memory and cognition. eNeuro 6. https://doi.org/10.1523/ENEURO.0360-18.2019

  20. Beinfeld MC, Connolly K (2001) Activation of CB1 cannabinoid receptors in rat hippocampal slices inhibits potassium-evoked cholecystokinin release, a possible mechanism contributing to the spatial memory defects produced by cannabinoids. Neurosci Lett 301(1):69–71. https://doi.org/10.1016/s0304-3940(01)01591-9

    Article  CAS  PubMed  Google Scholar 

  21. Bodor AL, István K, Gábor N, Ken M, Catherine L, Norbert H, Freund TF (2005) Endocannabinoid signaling in rat somatosensory cortex: laminar differences and involvement of specific interneuron types. J Neurosci 25(29):6845–6856. https://doi.org/10.1523/JNEUROSCI.0442-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Malihe S, Parham R, Maryam R (2017) The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats. Iran J Basic Med Sci 20(12):1368–1376. https://doi.org/10.22038/IJBMS.2017.9619

    Article  Google Scholar 

  23. Bugge A, Jansen PG, De Maria L, Sanni SJ, Clausen TR (2018) Cloning and characterization of the porcine gastrin/cholecystokinin type 2 receptor. Eur J Pharmacol 833(undefined):357–363. https://doi.org/10.1016/j.ejphar.2018.06.020

    Article  CAS  PubMed  Google Scholar 

  24. Irwin N, Frizelle P, O’Harte FP, Flatt PR (2013) (pGlu-Gln)-CCK-8[mPEG]: a novel, long-acting, mini-PEGylated cholecystokinin (CCK) agonist that improves metabolic status in dietary-induced diabetes. Biochem Biophys Acta 1830:4009–4016. https://doi.org/10.1016/j.bbagen.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Li H, Su Y, Ma J, Yuan Y, Yu Z, Shi M, Shao S et al (2022) Neuroprotective Effects of a Cholecystokinin Analogue in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Parkinson’s Disease Mouse Model. Front Neurosci 16(undefined):814430. https://doi.org/10.3389/fnins.2022.814430

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deng M, Zhang Q, Wu Z, Ma T, He A, Zhang T, Ke X, Yu Q et al (2020) Mossy cell synaptic dysfunction causes memory imprecision via miR-128 inhibition of STIM2 in Alzheimer’s disease mouse model. Aging Cell 19(5):e13144. https://doi.org/10.1111/acel.13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. https://doi.org/10.1126/science.1074069

    Article  CAS  PubMed  Google Scholar 

  28. Fuxe K, Li XM, Bjelke B, Hedlund PB, Biagini G, Agnati LF (1994) Possible mechanisms for the powerful actions of neuropeptides. Ann N Y Acad Sci 739:42–59. https://doi.org/10.1111/j.1749-6632.1994.tb19806.x

    Article  CAS  PubMed  Google Scholar 

  29. Zhong W, Barde S, Mitsios N, Adori C, Oksvold P, Feilitzen KV, O’Leary L, Csiba L et al (2022) The neuropeptide landscape of human prefrontal cortex. Proceed Natl Acad Sci USA 119:e2123146119. https://doi.org/10.1073/pnas.2123146119

    Article  CAS  Google Scholar 

  30. Whissell PD, Bang JY, Khan I, Xie YF, Parfitt GM, Grenon M, Plummer NW, Jensen P et al (2019) Selective Activation of Cholecystokinin-Expressing GABA (CCK-GABA) Neurons Enhances Memory and Cognition. eNeuro, 6(1) e0360–18, 1–15. https://doi.org/10.1523/ENEURO.0360-18.2019

  31. Yu-Jia L, Tian-Tian L, Lin-Hao J, Qian L, Zheng-Liang Ma, Tian-Jiao X, Xiao-Ping Gu (2021) Identification of hub genes associated with cognition in the hippocampus of Alzheimer’s Disease. Bioengineered 12(2):9598–9609. https://doi.org/10.1080/21655979.2021.1999549

    Article  CAS  Google Scholar 

  32. Plagman A, Hoscheidt S, McLimans KE, Klinedinst B, Pappas C, Anantharam V, Kanthasamy A, Willette AA et al (2019) Cholecystokinin and Alzheimer’s disease: a biomarker of metabolic function, neural integrity, and cognitive performance. Neurobiol Aging 76(undefined):201–207. https://doi.org/10.1016/j.neurobiolaging.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chun-Min Lo, Samuelson LC, Brad CJ, Alexandra K, Justin H, Jandacek RJ, Sakai RR, Benoit SC et al (2008) Characterization of mice lacking the gene for cholecystokinin. Am J Physiol Regul Integr Comp Physiol 294(3):R803–R810. https://doi.org/10.1152/ajpregu.00682.2007

    Article  CAS  Google Scholar 

  34. Sonia P, Zhenze J, Ben B, Leigh-Ana R, Anthony O, Rissman RA, Vivian H (2022) Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain. ACS Chem Neurosci 13(13):1992–2005. https://doi.org/10.1021/acschemneuro.2c00222

    Article  CAS  Google Scholar 

  35. Voits M, Hasenöhrl RU, Huston JP, Fink H (2001) Repeated treatment with cholecystokinin octapeptide improves maze performance in aged Fischer 344 rats. Peptides 22(8):1325–30. https://doi.org/10.1016/s0196-9781(01)00459-4

    Article  CAS  PubMed  Google Scholar 

  36. Robin N, Sridevi V, Mary B, Yoon BJ, Cajanding JD, Chloe B, Derya S, Itaru I et al (2020) Cholecystokinin-Expressing Interneurons of the Medial Prefrontal Cortex Mediate Working Memory Retrieval. J Neurosci 40(11):2314–2331. https://doi.org/10.1523/JNEUROSCI.1919-19.2020

    Article  Google Scholar 

  37. Zhang L-L, Wei X-F, Zhang Y-H, Xu S-J, Chen X-W, Wang C, Wang Q-W (2013) CCK-8S increased the filopodia and spines density in cultured hippocampal neurons of APP/PS1 and wild-type mice. Neurosci Lett 542(undefined):47–52. https://doi.org/10.1016/j.neulet.2013.03.023

    Article  CAS  PubMed  Google Scholar 

  38. Euler MJ, Duff K, King JB, Hoffman JM (2022) Recall and recognition subtests of the repeatable battery for the assessment of neuropsychological status and their relationship to biomarkers of Alzheimer's disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, undefined(undefined):1–18. https://doi.org/10.1080/13825585.2022.2124229

  39. Hölscher C (2003) Time, space, and hippocampal functions. Rev Neurosci 14:253–284. https://doi.org/10.1515/revneuro.2003.14.3.253

    Article  PubMed  Google Scholar 

  40. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384. https://doi.org/10.1016/j.neurobiolaging.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  41. Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimarães DM, Szczupak D, Parente-Bruno DR, Carvalho LRB et al (2013) Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136(null):3738–52. https://doi.org/10.1093/brain/awt273

    Article  PubMed  PubMed Central  Google Scholar 

  42. Opazo P, da Silva VS, Carta M, Breillat C, Coultrap SJ, Grillo-Bosch D, Sainlos M, Coussen F et al (2018) CaMKII Metaplasticity Drives Aβ Oligomer-Mediated Synaptotoxicity. Cell Rep 23(11):3137–3145. https://doi.org/10.1016/j.celrep.2018.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ji-Hong L, Meng Z, Qian W, Ding-Yu Wu, Wei J, Neng-Yuan Hu, Jia-Zhuo L, Kai Z, Shu-Ji Li, Xiao-Wen Li, Jian-Ming Y, Tian-Ming G (2022) Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol Psychiatry 27(2):873–885. https://doi.org/10.1038/s41380-021-01332-6

    Article  CAS  Google Scholar 

  44. Li Q, Wang X, Wang ZH, Lin Z, Yang J, Chen J, Wang R, Ye W et al (2022) Changes in dendritic complexity and spine morphology following BCG immunization in APP/PS1 mice. Hum Vaccin Immunother undefined(undefined):2121568. https://doi.org/10.1080/21645515.2022.2121568

  45. Martinez DV, Pomrenze MB, Manning CE, Casper C, Wolfden AL, Malenka RC, Kauer JA (2022) Somatodendritic Release of Cholecystokinin Potentiates GABAergic Synapses Onto Ventral Tegmental Area Dopamine Cells. Biol Psychiatry undefined (undefined):undefined. https://doi.org/10.1016/j.biopsych.2022.06.011

  46. Wenqiang Li, Luxian Lv, Xiong-Jian L (2022) In vivo study sheds new light on the dendritic spine pathology hypothesis of schizophrenia. Mol Psychiatry 27(4):1866–1868. https://doi.org/10.1038/s41380-022-01449-2

    Article  Google Scholar 

  47. George H, Bashir ZI, Hussain S (2022) Impaired hippocampal NMDAR-LTP in a transgenic model of NSUN2-deficiency. Neurobiol Dis 163(undefined):105597. https://doi.org/10.1016/j.nbd.2021.105597

    Article  CAS  PubMed  Google Scholar 

  48. Hamd-Ghadareh S, Salimi A, Parsa S, Mowla SJ (2022) Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer’s disease biomarker. Biosens Bioelectron 199(undefined):113895. https://doi.org/10.1016/j.bios.2021.113895

    Article  CAS  PubMed  Google Scholar 

  49. El Bar Y, Kanner S, Barzilai A, Hanein Y (2018) Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS One 13(10):e0203761. https://doi.org/10.1371/journal.pone.0203761

    Article  CAS  Google Scholar 

  50. Przemysław K, Grażyna L, Ewelina C, Monika W, Aleksandra S, Janusz M (2018) BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol Neurobiol 38(3):579–593. https://doi.org/10.1007/s10571-017-0510-4

    Article  CAS  Google Scholar 

  51. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, Laviv T, Hempstead B et al (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538(7623):99–103. https://doi.org/10.1038/nature19766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hailou Z, Yan S, Suk-Yu Y, Yanmeng Z, Xinxin S, Han-Ting Z, Boran Z, Haoxin Wu et al (2022) Synergistic effects of two naturally occurring iridoids in eliciting a rapid antidepressant action by up-regulating hippocampal PACAP signalling. Br J Pharmacol 179(16):4078–4091. https://doi.org/10.1111/bph.15847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank researcher Ning-Sun, Researcher Xiang-hua Liu, and Researcher Cai-Li Zhang for TEM technical assistance.

Funding

This work was supported by Natural Science Foundation of China(U1504829), Doctoral Fund of Henan University of Chinese Medicine (numbers BSJJ2022-09), Scientific and Technological Innovation Team Support Program for Colleges and Universities in Henan Province (21IRTSTHN026), Joint Research Fund of Science and Technology R&D Plan of Henan Province (NO. 222301420068).

Author information

Authors and Affiliations

Authors

Contributions

Zijuan Zhang: Writing-original draft, Conceptualization. Ziyang Yu: Software, Investigation, Data curation. Ye Yuan: Data curation. Jing Yang: Formal analysis. Shijie Wang: Project administration. He Ma: Formal analysis. Li Hao: Investigation. Zhonghua Li: Investigation. Zhenqiang Zhang: Supervision, Funding acquisition. Christian Hölscher: Editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Zhenqiang Zhang or Christian Hölscher.

Ethics declarations

Ethical Approval

All animals were treated according to the guidelines for the Care and Use of Laboratory Animals and the experimental procedures were approved by the Animal Care and Use Committee of Henan University of Chinese Medicine (No: DWLL201903076).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yu, Z., Yuan, Y. et al. Cholecystokinin Signaling can Rescue Cognition and Synaptic Plasticity in the APP/PS1 Mouse Model of Alzheimer’s Disease. Mol Neurobiol 60, 5067–5089 (2023). https://doi.org/10.1007/s12035-023-03388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03388-7

Keywords

Navigation