Skip to main content
Log in

Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Identification of genetic mutations in Parkinson’s disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.

The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balestrino R, Schapira AHV (2020) Parkinson disease. Eur J Neurol 27(1):27–42. https://doi.org/10.1111/ene.14108

    Article  CAS  PubMed  Google Scholar 

  2. von Campenhausen S, Bornschein B, Wick R, Bötzel K, Sampaio C, Poewe W, Oertel W, Siebert U, Berger K, Dodel R (2005) Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol 15(4):473–490. https://doi.org/10.1016/j.euroneuro.2005.04.007

    Article  CAS  Google Scholar 

  3. Willis AW, Roberts E, Beck JC, Fiske B, Ross W, Savica R, Van Den Eeden SK, Tanner CM, Marras C (2022) Parkinson’s Foundation P4 Group. Incidence Park Dis N Am NPJ ParkDis 8(1):170. https://doi.org/10.1038/s41531-022-00410-y

    Article  CAS  Google Scholar 

  4. Abbas MM, Xu Z, Tan LCS (2018) Epidemiology of Parkinson’s Disease-East versus West. Mov Disord Clin Pract 5(1):14–28. https://doi.org/10.1002/mdc3.12568

  5. Das SK, Misra AK, Ray BK, Hazra A, Ghosal MK, Chaudhuri A, Roy T, Banerjee TK et al (2010) Epidemiology of Parkinson disease in the city of Kolkata, India: a community-based study. Neurology 75:1362–1369. https://doi.org/10.1212/WNL.0b013e3181f735a7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gourie-Devi M (2014) Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson’s disease and tremors. Neurol India 62(6):588–598. https://doi.org/10.4103/0028-3886.149365

    Article  CAS  PubMed  Google Scholar 

  7. Je G, Arora S, Raithatha S, Barrette R, Valizadeh N, Shah U, Desai D, Deb A et al (2021) Epidemiology of Parkinson’s disease in rural Gujarat, India. Neuroepidemiology 55(3):188–195. https://doi.org/10.1159/000515030

    Article  PubMed  Google Scholar 

  8. Foo JN, Tan LC, Irwan ID, Au WL, Low HQ, Prakash KM, Ahmad-Annuar A, Bei J et al (2017) Genome-wide association study of Parkinson’s disease in East Asians. Hum Mol Genet 26(1):226–232. https://doi.org/10.1093/hmg/ddw379

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee R, Starkov AA, Beal MF, Thomas B (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792(7):651–663. https://doi.org/10.1016/j.bbadis.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  10. Schuh RA, Richardson JR, Gupta RK, Flaws JA, Fiskum G (2009) Effects of the organochlorine pesticide methoxychlor on dopamine metabolites and transporters in the mouse brain. Neurotoxicology. 30(2):274–280. https://doi.org/10.1016/j.neuro.2008.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394

    Article  CAS  PubMed  Google Scholar 

  12. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827. https://doi.org/10.1111/j.1471-4159.1990.tb02325.x

  13. Schapira AH, Mann VM, Cooper JM, Dexter D et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145. https://doi.org/10.1111/j.1471-4159.1990.tb05809.x

  14. Toulorge D, Schapira AH, Hajj R (2016) Molecular changes in the postmortem Parkinsonian brain. J Neurochem 139(Suppl 1):27–58. https://doi.org/10.1111/jnc.13696

    Article  CAS  PubMed  Google Scholar 

  15. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65(7-8):1272–1284. https://doi.org/10.1007/s00018-008-7589-1

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka J, Nakamura H, Honda S, Takada K, Kato S (1988) Neuropathological study on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine of the crab-eating monkey. Acta Neuropathol 75(4):370–376. https://doi.org/10.1007/BF00687790

    Article  CAS  PubMed  Google Scholar 

  17. Hatton C, Reeve A, Lax NZ, Blain A, Ng YS, El-Agnaf O, Attems J, Taylor JP et al (2020) Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathol Commun 8(1):103. https://doi.org/10.1186/s40478-020-00985-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bano D, Prehn JHM (2018) Apoptosis-inducing factor (AIF) in physiology and disease: the tale of a repented natural born killer. EBioMedicine 30:29–37. https://doi.org/10.1016/j.ebiom.2018.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guida M, Zanon A, Montibeller L, Lavdas AA, Ladurner J, Pischedda F, Rakovic A, Domingues FS et al (2019) Parkin interacts with apoptosis-inducing factor and interferes with its translocation to the nucleus in neuronal cells. Int J Mol Sci 20(3):748. https://doi.org/10.3390/ijms20030748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Liu W, Lu Y, Tian H, Duan C, Lu L, Gao G, Wu X et al (2018) Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy. 14(5):845–861. https://doi.org/10.1080/15548627.2017.1390636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Czubowicz K, Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP (2019) The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol 56(8):5436–5455. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(6 Suppl 3):S161–70. https://doi.org/10.1212/wnl.47.6_suppl_3.161s

  23. Rekha KR, Selvakumar GP (2014) Gene expression regulation of Bcl2, Bax and cytochrome-C by geraniol on chronic MPTP/probenecid induced C57BL/6 mice model of Parkinson's disease. Chem Biol Interact 25:217:57–66. https://doi.org/10.1016/j.cbi.2014.04.010

  24. Bekker M, Abrahams S, Loos B, Bardien S (2021) Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol Aging 100:91–105. https://doi.org/10.1016/j.neurobiolaging.2020.12.013

    Article  CAS  PubMed  Google Scholar 

  25. Irwin DJ, Lee VM, Trojanowski JQ (2013) Parkinson's disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14(9):626–636. https://doi.org/10.1038/nrn3549

  26. Michel HE, Tadros MG, Esmat A, Khalifa AE, Abdel-Tawab AM (2017) Tetramethylpyrazine ameliorates rotenone-induced Parkinson’s disease in rats: involvement of its anti-inflammatory and anti-apoptotic actions. Mol Neurobiol 54(7):4866–4878. https://doi.org/10.1007/s12035-016-0028-7

    Article  CAS  PubMed  Google Scholar 

  27. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature. 388(6645):839–840. https://doi.org/10.1038/42166

    Article  CAS  PubMed  Google Scholar 

  28. Sun J, Wang L, Bao H, Premi S, Das U, Chapman ER, Roy S (2019) Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci U S A 116(23):11113–11115. https://doi.org/10.1073/pnas.1903049116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ordonez DG, Lee MK, Feany MB (2018) α-Synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97(1):108–124.e6. https://doi.org/10.1016/j.neuron.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  30. Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann J, Schäfer K-H (2018) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  Google Scholar 

  31. Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA (2019) Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 360:216–227. https://doi.org/10.1016/j.bbr.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  32. Vidyadhara DJ, Yarreiphang H, Raju TR, Alladi PA (2017) Admixing of MPTP-resistant and susceptible mice strains augments nigrostriatal neuronal correlates to resist MPTP-induced neurodegeneration. Mol Neurobiol 54:6148–6162. https://doi.org/10.1007/s12035-016-0158-y

    Article  CAS  PubMed  Google Scholar 

  33. Alladi PA, Mahadevan A, Shankar SK, Raju TR, Muthane U (2010a) Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40:43–52. https://doi.org/10.1016/j.jchemneu.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  34. Alladi PA, Mahadevan A, Vijayalakshmi K, Muthane U, Shankar SK, Raju TR (2010b) Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 57:530–539. https://doi.org/10.1016/j.neuint.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  35. Vidyadhara DJ, Yarreiphang H, Abhilash PL, Raju TR, Alladi PA (2016) Differential expression of calbindin in nigral dopaminergic neurons in two mice strains with differential susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Chem Neuroanat 76:82–89. https://doi.org/10.1016/j.jchemneu.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  36. Alladi PA, Wadhwa S, Singh N (2002) Effect of prenatal auditory enrichment on developmental expression of synaptophysin and syntaxin 1 in chick brainstem auditory nuclei. Neuroscience. 114(3):577–590. https://doi.org/10.1016/s0306-4522(02)00319-6

    Article  CAS  PubMed  Google Scholar 

  37. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1. https://doi.org/10.1093/nar/gks808

  38. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

  39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

  40. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ et al (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095. https://doi.org/10.1038/nm1097-1089

    Article  CAS  PubMed  Google Scholar 

  41. Raff MC (1992) Social controls on cell survival and cell death. Nature 2 356(6368):397–400. https://doi.org/10.1038/356397a0

  42. Chu CT, Zhu JH, Cao G, Signore A, Wang S, Chen J (2005) Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells. J Neurochem 94(6):1685–1695. https://doi.org/10.1111/j.1471-4159.2005.03329.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prabhu SB, Khalsa JK, Banerjee H, Das A, Srivastava S, Mattoo HR, Thyagarajan K, Tanwar S et al (2013) Role of apoptosis-inducing factor (Aif) in the T cell lineage. Indian J Med Res 138(5):577–590

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pajarillo E, Johnson J Jr, Kim J, Karki P, Son DS, Aschner M, Lee E (2018) 17β-estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65:280–288. https://doi.org/10.1016/j.neuro.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  45. Song DH, Kim GJ, Lee KJ, Shin JS, Kim DH, Park BJ, An JH (2018) Mitigation effects of a novel herbal medicine, hepad, on neuroinflammation, neuroapoptosis, and neuro-oxidation. Molecules. 23(11):2920. https://doi.org/10.3390/molecules23112920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strasser A, Cory S, Adams JM (2011) Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30(18):3667–3683. https://doi.org/10.1038/emboj.2011.307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Espinoza S, Scarpato M, Damiani D, Managò F, Mereu M, Contestabile A, Peruzzo O, Carninci P et al (2020) SINEUP non-coding RNA targeting GDNF rescues motor deficits and neurodegeneration in a mouse model of Parkinson’s disease. Mol Ther 28(2):642–652. https://doi.org/10.1016/j.ymthe.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  48. Vidyadhara DJ, Yarreiphang H, Raju TR (2021) Alladi PA Differences in neuronal numbers, morphology and developmental apoptosis in mice nigra provide experimental evidence of ontogenic origin of vulnerability to Parkinson’s disease. Neurotox Res 39(6):1892–1907. https://doi.org/10.1007/s12640-021-00439-6

    Article  CAS  PubMed  Google Scholar 

  49. Patel D, Jana A, Roy A, Pahan K (2019) Cinnamon and its metabolite protect the nigrostriatum in a mouse model of Parkinson’s disease via astrocytic GDNF. J Neuroimmune Pharmacol 14(3):503–518. https://doi.org/10.1007/s11481-019-09855-0

  50. Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson’s disease? Neurobiol Dis 25(1):134–149. https://doi.org/10.1016/j.nbd.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  51. Alladi PA, Mahadevan A, Yasha TC, Raju TR, Shankar SK, Muthane U (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159:236–245. https://doi.org/10.1016/j.neuroscience.2008.11.051

    Article  CAS  PubMed  Google Scholar 

  52. Naskar A, Mahadevan A, Philip M, Alladi PA (2019) Aging mildly affects dendritic arborisation and synaptic protein expression in human substantia nigra pars compacta. J Chem Neuroanat 97:57–65. https://doi.org/10.1016/j.jchemneu.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  53. Jyothi HJ, Vidyadhara DJ, Mahadevan A, Philip M, Parmar SK, Manohari SG, Shankar SK, Raju TR et al (2015) Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol Aging 36(12):3321–3333

    Article  CAS  PubMed  Google Scholar 

  54. Prescott IA, Dostrovsky JO, Moro E, Hodaie M, Lozano AM, Hutchison WD (2009) Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain 132(Pt 2):309–318. https://doi.org/10.1093/brain/awn322

    Article  CAS  PubMed  Google Scholar 

  55. Faynveitz A, Lavian H, Jacob A, Korngreen A (2019) Proliferation of inhibitory input to the substantia nigra in experimental Parkinsonism. Front Cell Neurosci 13(13):417. https://doi.org/10.3389/fncel.2019.00417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rapisardi SC, Warrington VO, Wilson JS (1990) Effects of MPTP on the fine structure of neurons in substantia nigra of dogs. Brain Res 512(1):147–154. https://doi.org/10.1016/0006-8993(90)91184-i

    Article  CAS  PubMed  Google Scholar 

  57. Anglade P, Vyas S, Hirsch EC, Agid Y (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12(3):603–610

    CAS  PubMed  Google Scholar 

  58. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162(1):37–50. https://doi.org/10.1006/exnr.2000.7333

    Article  CAS  PubMed  Google Scholar 

  59. Abhilash PL, Bharti U, Rashmi SK, Philip M, Raju TR, Kutty BM, Chandrasekhar Sagar BK, Alladi PA (2020) Aging and MPTP-sensitivity depend on molecular and ultrastructural signatures of astroglia and microglia in mice substantia nigra. bioRxiv 2020.12.15.422212. https://doi.org/10.1101/2020.12.15.422212

  60. Seshadri A, Alladi PA (2019) Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility. Neurotox Res 36(1):27–38. https://doi.org/10.1007/s12640-019-00036-8

    Article  CAS  PubMed  Google Scholar 

  61. Pan J, Li H, Ma JF, Tan YY, Xiao Q, Ding JQ, Chen SD (2012) Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Trans Neurodegener 1(1):16. https://doi.org/10.1186/2047-9158-1-16

    Article  CAS  Google Scholar 

  62. Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588

    Article  CAS  PubMed  Google Scholar 

  63. Moore C, Xu M, Bohlen JK, Meshul CK (2021) Differential ultrastructural alterations in the Vglut2 glutamatergic input to the substantia nigra pars compacta/pars reticulata following nigrostriatal dopamine loss in a progressive mouse model of Parkinson’s disease. Eur J Neurosci 53(7):2061–2077. https://doi.org/10.1111/ejn.14894

    Article  PubMed  Google Scholar 

  64. Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis 1(1):19–33. https://doi.org/10.3233/JPD-2011-11023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Wood NW (2004) Hereditary early-onset Parkinson's disease caused by mutations in it. Science 304(5674):1158 LP–1151160 Retrieved from http://science.sciencemag.org/content/304/5674/1158.abstract

    Article  Google Scholar 

  66. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26(6):719–723. https://doi.org/10.1002/ana.410260606

    Article  PubMed  Google Scholar 

  67. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1(8649):1269. https://doi.org/10.1016/s0140-6736(89)92366-0

    Article  CAS  PubMed  Google Scholar 

  68. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(Suppl 1):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  69. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20(2):145–155. https://doi.org/10.1038/nn.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  71. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. G.H. Mohan, Head Veterinarian at the National Centre for Biological Sciences, Bengaluru, for providing breeding colonies of CD-1 mice strain. We are grateful to Dr. Abhilash PL for his help in sampling the fecal microbiome.

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are not publicly available since these observations are yet not published, but will be available from the corresponding author on reasonable request.

Funding

The study was funded by the Science and Engineering Research Board, Department of Science and Technology, Govt. of India to PAA (No. SR/SO/HS-0121/2012). HY was a University Grants Commission (UGC) fellow HY received (1) IBRO travel grant to present a part of the study at IBRO/APRC School Panjab University, 2015 and (2) Department of Biotechnology India Travel grant, to present a part of this study at 5th Asian & Oceanian Parkinson’s Disease and Movement Disorders Congress, Manila, 2016. VDJ was a NIMHANS fellow. The infrastructural support was provided by NIMHANS.

Author information

Authors and Affiliations

Authors

Contributions

Phalguni Anand Alladi (PAA) and Haorei Yarreiphang (HY) contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HY, D J Vidyadhara, Anand Krishnan Nambisan, BK Chandrasekar Sagar, and PAA. The first draft of the manuscript was written by HY and reviewed by Trichur R. Raju. All authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Phalguni Anand Alladi.

Ethics declarations

Ethics Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of our institution which adhere to the CPCSEA and NIH guidelines.

Consent to Participate

Not applicable. No human data is being presented in this study.

Consent for Publication

Not applicable. No human data is being presented in this study.

Competing Interests

TRR and BKCS were employees of NIMHANS when the study was conducted and have since superannuated. PAA is currently an employee of NIMHANS. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarreiphang, H., Vidyadhara, D.J., Nambisan, A.K. et al. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 60, 4778–4794 (2023). https://doi.org/10.1007/s12035-023-03372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03372-1

Keywords

Navigation