Skip to main content

Advertisement

Log in

Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird’s eye view on the broad range of tubulin functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. https://doi.org/10.1146/annurev-biophys-042910-155359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim S, Coulombe PA (2007) Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21:1581–1597. https://doi.org/10.1101/gad.1552107

    Article  CAS  PubMed  Google Scholar 

  3. Szeverenyi I, Cassidy AJ, Cheuk WC et al (2008) The human intermediate filament database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 29:351–360. https://doi.org/10.1002/humu.20652

    Article  CAS  PubMed  Google Scholar 

  4. Yuan A, Rao MV, Veeranna, Nixon RA (2017) Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol 9:a018309. https://doi.org/10.1101/cshperspect.a018309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Robertis E, Franchi CM (1953) The submicroscopic organization of axon material isolated from myelin nerve fibers. J Exp Med 98:269–276. https://doi.org/10.1084/jem.98.3.269

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mohri H (1968) Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 217:1053–1054. https://doi.org/10.1038/2171053a0

    Article  CAS  PubMed  Google Scholar 

  7. Stephens RE (1970) Thermal fractionation of outer fiber doublet microtubules into A- and B-subfiber components: A- and B-tubulin. J Mol Biol 47:353–363. https://doi.org/10.1016/0022-2836(70)90307-4

    Article  CAS  PubMed  Google Scholar 

  8. Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28:2924–2931. https://doi.org/10.1091/mbc.e16-05-0271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang R, Alushin GM, Brown A, Nogales E (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162:849–859. https://doi.org/10.1016/j.cell.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nogales E, Wolf SG, Downing KH (1998) Structure of the αβ tubulin dimer by electron crystallography. Nature 391:199–203. https://doi.org/10.1038/34465

    Article  CAS  PubMed  Google Scholar 

  11. Downing KH (2000) Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 16:89–111. https://doi.org/10.1146/annurev.cellbio.16.1.89

    Article  CAS  PubMed  Google Scholar 

  12. Yu N, Galjart N (2020) Purification of mammalian tubulins and tubulin-associated proteins using a P2A-based expression system. Methods Mol Biol 2101:1–17. https://doi.org/10.1007/978-1-0716-0219-5_1

  13. Mitchison T, Kirscher M (1984) Dynamic instability of microtubules. Nature 312:237–242. https://doi.org/10.1038/312237a0

    Article  CAS  PubMed  Google Scholar 

  14. Nicklas RB (1988) The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem 17:431–449. https://doi.org/10.1146/annurev.bb.17.060188.002243

    Article  CAS  PubMed  Google Scholar 

  15. Kaverina I, Straube A (2011) Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 22:968–974. https://doi.org/10.1016/j.semcdb.2011.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mulder BM, Janson ME (2015) Biological filaments: self-healing microtubules. Nat Mater 14:1080–1081. https://doi.org/10.1038/nmat4460

    Article  CAS  PubMed  Google Scholar 

  17. Schaedel L, John K, Gaillard J et al (2015) Microtubules self-repair in response to mechanical stress. Nat Mater 14:1156–1163. https://doi.org/10.1038/nmat4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ackerman S (1992) Discovering the brain. National Academies Press, Washington, D.C.

    Google Scholar 

  19. Flynn KC (2013) The cytoskeleton and neurite initiation the cytoskeleton and neurite initiation. BioArchitecture 3:86–109. https://doi.org/10.4161/bioa.26259

    Article  PubMed  PubMed Central  Google Scholar 

  20. Letourneau PC, Ressler AH (1984) Inhibition of neurite initiation and growth by taxol. J Cell Biol 98:1355–1362. https://doi.org/10.1083/jcb.98.4.1355

    Article  CAS  PubMed  Google Scholar 

  21. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381. https://doi.org/10.1146/annurev.neuro.31.060407.125536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cáceres A, Ye B, Dotti CG (2012) Neuronal polarity: demarcation, growth and commitment. Curr Opin Cell Biol 24:547–553. https://doi.org/10.1016/j.ceb.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kapitein LC, Hoogenraad CC (2015) Building the neuronal microtubule cytoskeleton. Neuron 87:492–506. https://doi.org/10.1016/j.neuron.2015.05.046

    Article  CAS  PubMed  Google Scholar 

  24. Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109:3085–3094. https://doi.org/10.1083/jcb.109.6.3085

    Article  CAS  PubMed  Google Scholar 

  25. Burton PR, Paige JL (1981) Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci 78:3269–3273. https://doi.org/10.1073/pnas.78.5.3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665. https://doi.org/10.1083/jcb.91.3.661

    Article  CAS  PubMed  Google Scholar 

  27. Burton PR (1988) Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res 473:107–115. https://doi.org/10.1016/0006-8993(88)90321-6

    Article  CAS  PubMed  Google Scholar 

  28. Yau KW, Schatzle P, Tortosa E et al (2016) Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J Neurosci 36:1071–1085. https://doi.org/10.1523/jneurosci.2430-15.20166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hill SE, Parmar M, Gheres KW et al (2012) Development of dendrite polarity in Drosophila neurons. Neural Dev 7:1–13. https://doi.org/10.1186/1749-8104-7-34

    Article  Google Scholar 

  30. Stone MC, Roegiers F, Rolls MM (2008) Microtubules have opposite orientation in axons and dendrites of drosophila neurons. Mol Biol Cell 19:4122–4129. https://doi.org/10.1091/mbc.e07-10-1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farías GG, Guardia CM, Britt DJ et al (2015) Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep 13:1221–1232. https://doi.org/10.1016/j.celrep.2015.09.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conde C, Cáceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332. https://doi.org/10.1038/nrn2631

    Article  CAS  PubMed  Google Scholar 

  33. Ludueña RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4:445–457. https://doi.org/10.1091/mbc.4.5.445

    Article  PubMed  PubMed Central  Google Scholar 

  34. Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219. https://doi.org/10.1016/0092-8674(83)90350-1

    Article  CAS  PubMed  Google Scholar 

  35. Schatz PJ, Pillus L, Grisafi P et al (1986) Two functional alpha-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. Mol Cell Biol 6:3711–3721. https://doi.org/10.1128/MCB.6.11.3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nsamba ET, Gupta ML (2022) Tubulin isotypes - functional insights from model organisms. J Cell Sci 135:. https://doi.org/10.1242/jcs.259539

  37. Kalfayan L (1981) α-tubulin genes of Drosophila. Cell 24:97–106. https://doi.org/10.1016/0092-8674(81)90505-5

    Article  CAS  PubMed  Google Scholar 

  38. Ludueña RF (2013) A hypothesis on the origin and evolution of tubulin. Elsevier

    Book  Google Scholar 

  39. Sullivan KF (1988) Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 4:687–716. https://doi.org/10.1146/annurev.cb.04.110188.003351

    Article  CAS  PubMed  Google Scholar 

  40. Khodiyar VK, Maltais LJ, Sneddon KMB et al (2007) A revised nomenclature for the human and rodent α-tubulin gene family. Genomics 90:285–289. https://doi.org/10.1016/j.ygeno.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  41. Findeisen P, Mühlhausen S, Dempewolf S et al (2014) Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 6:2274–2288. https://doi.org/10.1093/gbe/evu187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Little M, Seehaus T (1988) Comparative analysis of tubulin sequences. Comp Biochem Physiol Part B Comp Biochem 90:655–670. https://doi.org/10.1016/0305-0491(88)90320-3

    Article  CAS  Google Scholar 

  43. Ponstingl H, Krauhs E, Little M, Kempf T (1981) Complete amino acid sequence of alpha-tubulin from porcine brain. Proc Natl Acad Sci 78:2757–2761. https://doi.org/10.1073/pnas.78.5.2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Breviario D, Gianì S, Morello L (2013) Multiple tubulins: evolutionary aspects and biological implications. Plant J 75:202–218. https://doi.org/10.1111/tpj.12243

    Article  CAS  PubMed  Google Scholar 

  45. Fygenson DK (2004) Variability-based sequence alignment identifies residues responsible for functional differences in and tubulin. Protein Sci 13:25–31. https://doi.org/10.1110/ps.03225304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ludueña RF, Banerjee A (2008) The isotypes of tubulin. In: The role of microtubules in cell biology, neurobiology, and oncology. Humana Press, pp 123–175. https://doi.org/10.1007/978-1-59745-336-3_6

  47. Breuss MW, Leca I, Gstrein T et al (2017) Tubulins and brain development – the origins of functional specification. Mol Cell Neurosci 84:58–67. https://doi.org/10.1016/j.mcn.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  48. Wang D, Villasante A, Lewis SA, Cowan NJ (1986) The mammalian β-tubulin repertoire: hematopoietic expression of a novel, heterologous β-tubulin isotype. J Cell Biol 103:1903–1910. https://doi.org/10.1083/jcb.103.5.1903

    Article  CAS  PubMed  Google Scholar 

  49. Hutchens JA, Hoyle HD, Turner FR, Raff EC (1997) Structurally similar Drosophila α-tubulins are functionally distinct in vivo. Mol Biol Cell 8:481–500. https://doi.org/10.1091/mbc.8.3.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoyle HD, Raff EC (1990) Two Drosophila beta tubulin isoforms are not functionally equivalent. J Cell Biol 111:1009–1026. https://doi.org/10.1083/jcb.111.3.1009

    Article  CAS  PubMed  Google Scholar 

  51. Bittermann E, Abdelhamed Z, Liegel RP et al (2019) Differential requirements of tubulin genes in mammalian forebrain development. PLOS Genet 15:e1008243. https://doi.org/10.1371/journal.pgen.1008243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Honda Y, Tsuchiya K, Sumiyoshi E et al (2017) Tubulin isotype substitution revealed that isotype combination modulates microtubule dynamics in C. elegans embryos. J Cell Sci 130:1652–1661. https://doi.org/10.1242/jcs.200923

    Article  CAS  PubMed  Google Scholar 

  53. Ben-Ze’ev A, Farmer SR, Penman S (1979) Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell 17:319–325. https://doi.org/10.1016/0092-8674(79)90157-0

    Article  PubMed  Google Scholar 

  54. Cleveland DW, Pittenger MF, Feramisco JR (1983) Elevation of tubulin levels by microinjection suppresses new tubulin synthesis. Nature 305:738–740. https://doi.org/10.1038/305738a0

    Article  CAS  PubMed  Google Scholar 

  55. Cleveland DW, Havercroft JC (1983) Is apparent autoregulatory control of tubulin synthesis nontranscriptionally regulated? J Cell Biol 97:919–924. https://doi.org/10.1083/jcb.97.3.919

    Article  CAS  PubMed  Google Scholar 

  56. Pachter JS, Yen TJ, Cleveland DW (1987) Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell 51:283–292. https://doi.org/10.1016/0092-8674(87)90155-3

    Article  CAS  PubMed  Google Scholar 

  57. Lin Z, Gasic I, Chandrasekaran V et al (2020) TTC5 mediates autoregulation of tubulin via mRNA degradation. Science 367:100–104. https://doi.org/10.1126/science.aaz4352

    Article  CAS  PubMed  Google Scholar 

  58. Joe PA, Banerjee A, Ludueña RF (2009) Roles of β-tubulin residues Ala428 and Thr429 in microtubule formation in vivo. J Biol Chem 284:4283–4291. https://doi.org/10.1074/jbc.M807491200

    Article  CAS  PubMed  Google Scholar 

  59. Serrano L, De la Torre J, Maccioni RB, Avila J (1984) Involvement of the carboxyl-terminal domain of tubulin in the regulation of its assembly. Proc Natl Acad Sci U S A 81:5989–5993. https://doi.org/10.1073/pnas.81.19.5989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260:43–45. https://doi.org/10.1016/s0021-9258(18)89688-0

    Article  CAS  PubMed  Google Scholar 

  61. Serrano L, Avila J, Maccioni RB (1984) Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaciion. Biochemistry 23:4675–4681. https://doi.org/10.1021/bi00315a024

    Article  CAS  PubMed  Google Scholar 

  62. Fiore M, Goulas C, Pillois X (2017) A new mutation in TUBB1 associated with thrombocytopenia confirms that C-terminal part of β1-tubulin plays a role in microtubule assembly. Clin Genet 91:924–926. https://doi.org/10.1111/cge.12879

    Article  CAS  PubMed  Google Scholar 

  63. Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160. https://doi.org/10.4161/cc.6.17.4633

    Article  CAS  PubMed  Google Scholar 

  64. Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76. https://doi.org/10.1016/j.ceb.2007.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21:307–326. https://doi.org/10.1038/s41580-020-0214-3

    Article  CAS  PubMed  Google Scholar 

  66. Song Y, Brady ST (2015) Post-translational modifications of tubulin: Pathways to functional diversity of microtubules. Trends Cell Biol 25:125–136. https://doi.org/10.1016/j.tcb.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  67. Janke C, Montagnac G (2017) Causes and consequences of microtubule acetylation. Curr Biol 27:R1287–R1292. https://doi.org/10.1016/j.cub.2017.10.044

    Article  CAS  PubMed  Google Scholar 

  68. Chu CW, Hou F, Zhang J et al (2011) A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell 22:448–456. https://doi.org/10.1091/mbc.E10-03-0203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Janke C, Rogowski K, Wloga D et al (2005) Biochemistry: tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–1762. https://doi.org/10.1126/science.1113010

    Article  CAS  PubMed  Google Scholar 

  70. Rogowski K, Juge F, van Dijk J et al (2009) Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137:1076–1087. https://doi.org/10.1016/j.cell.2009.05.020

    Article  CAS  PubMed  Google Scholar 

  71. Aillaud C, Bosc C, Peris L et al (2017) Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358:1448–1453. https://doi.org/10.1126/science.aao4165

    Article  CAS  PubMed  Google Scholar 

  72. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB et al (2017) Vasohibins encode tubulin detyrosinating activity. Science 358:1453–1456. https://doi.org/10.1126/science.aao5676

    Article  CAS  PubMed  Google Scholar 

  73. Zhou C, Yan L, Zhang W, Liu Z (2019) Structural basis of tubulin detyrosination by VASH2/SVBP heterodimer. Nat Commun 10:3212. https://doi.org/10.1038/s41467-019-11277-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bodakuntla S, Schnitzler A, Villablanca C et al (2020) Tubulin polyglutamylation is a general traffic control mechanism in hippocampal neurons. J Cell Sci 133:jcs241802. https://doi.org/10.1242/jcs.241802

    Article  CAS  PubMed  Google Scholar 

  75. Rogowski K, van Dijk J, Magiera MM et al (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143:564–578. https://doi.org/10.1016/j.cell.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  76. Shashi V, Magiera MM, Klein D et al (2018) Loss of tubulin deglutamylase CCP 1 causes infantile-onset neurodegeneration. EMBO J 37:1–12. https://doi.org/10.15252/embj.2018100540

    Article  CAS  Google Scholar 

  77. Magiera MM, Bodakuntla S, Žiak J et al (2018) Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 37:1–14. https://doi.org/10.15252/embj.2018100440

    Article  CAS  Google Scholar 

  78. McKenney RJ, Huynh W, Vale RD, Sirajuddin M (2016) Tyrosination of α-tubulin controls the initiation of processive dynein–dynactin motility. EMBO J 35:1175–1185. https://doi.org/10.15252/embj.201593071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Erck C, Peris L, Andrieux A et al (2005) A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci U S A 102:7853–7858. https://doi.org/10.1073/pnas.0409626102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Prota AE, Magiera MM, Kuijpers M et al (2013) Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 200:259–270. https://doi.org/10.1083/jcb.201211017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541. https://doi.org/10.1002/cne.21974

    Article  PubMed  Google Scholar 

  82. Hebebrand M, Hüffmeier U, Trollmann R et al (2019) The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet J Rare Dis 14:1–13. https://doi.org/10.1186/s13023-019-1020-x

    Article  Google Scholar 

  83. Keays DA, Tian G, Poirier K et al (2007) Mutations in α-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57. https://doi.org/10.1016/j.cell.2006.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keays DA, Cleak J, Huang GJ et al (2010) The role of Tuba1a in adult hippocampal neurogenesis and the formation of the dentate gyrus. Dev Neurosci 32:268–277. https://doi.org/10.1159/000319663

    Article  CAS  PubMed  Google Scholar 

  85. Belvindrah R, Natarajan K, Shabajee P et al (2017) Mutation of the α-tubulin Tuba1a leads to straighter microtubules and perturbs neuronal migration. J Cell Biol 216:2443–2461. https://doi.org/10.1083/jcb.201607074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Leca I, Phillips A, Hofer I et al (2020) A proteomic survey of microtubule-associated proteins in a R402H TUBA1A mutant mouse. PLoS Genet 16:1–26. https://doi.org/10.1371/journal.pgen.1009104

    Article  CAS  Google Scholar 

  87. Xie L, Huang J, Dai L et al (2021) Loss-of-function plays a major role in early neurogenesis of tubulin α-1 A (TUBA1A) mutation-related brain malformations. Mol Neurobiol 58:1291–1302. https://doi.org/10.1007/s12035-020-02193-w

    Article  CAS  PubMed  Google Scholar 

  88. Leandro-García LJ, Leskelä S, Landa I et al (2010) Tumoral and tissue-specific expression of the major human β-tubulin isotypes. Cytoskeleton 67:214–223. https://doi.org/10.1002/cm.20436

    Article  CAS  PubMed  Google Scholar 

  89. Brock S, Vanderhasselt T, Vermaning S et al (2021) Defining the phenotypical spectrum associated with variants in TUBB2A. J Med Genet 58:33–40. https://doi.org/10.1136/jmedgenet-2019-106740

    Article  CAS  PubMed  Google Scholar 

  90. Sferra A, Fattori F, Rizza T et al (2018) Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum Mol Genet 27:1892–1904. https://doi.org/10.1093/hmg/ddy096

    Article  CAS  PubMed  Google Scholar 

  91. Cederquist GY, Luchniak A, Tischfield MA et al (2012) An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and axon dysinnervation. Hum Mol Genet 21:5484–5499. https://doi.org/10.1093/hmg/dds393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaglin XH, Poirier K, Saillour Y et al (2009) Mutations in the Β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat Genet 41:746–752. https://doi.org/10.1038/ng.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stottmann RW, Donlin M, Hafner A et al (2013) A mutation in Tubb2b, a human polymicrogyria gene, leads to lethality and abnormal cortical development in the mouse. Hum Mol Genet 22:4053–4063. https://doi.org/10.1093/hmg/ddt255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ferreira A, Caceres A (1992) Expression of the class III β-tubulin isotype in developing neurons in culture. J Neurosci Res 32:516–529. https://doi.org/10.1002/jnr.490320407

    Article  CAS  PubMed  Google Scholar 

  95. Romaniello R, Arrigoni F, Panzeri E et al (2017) Tubulin-related cerebellar dysplasia: definition of a distinct pattern of cerebellar malformation. Eur Radiol 27:5080–5092. https://doi.org/10.1007/s00330-017-4945-2

    Article  PubMed  Google Scholar 

  96. Tischfield MA, Baris HN, Wu C et al (2010) Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87. https://doi.org/10.1016/j.cell.2009.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poirier K, Saillour Y, Bahi-Buisson N et al (2010) Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum Mol Genet 19:4462–4473. https://doi.org/10.1093/hmg/ddq377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reches A, Hiersch L, Simchoni S et al (2018) Whole-exome sequencing in fetuses with central nervous system abnormalities. J Perinatol 38:1301–1308. https://doi.org/10.1038/s41372-018-0199-3

    Article  CAS  PubMed  Google Scholar 

  99. Shimojima K, Okamoto N, Yamamoto T (2016) A novel TUBB3 mutation in a sporadic patient with asymmetric cortical dysplasia. Am J Med Genet Part A 170:1076–1079. https://doi.org/10.1002/ajmg.a.37545

    Article  CAS  Google Scholar 

  100. Saillour Y, Broix L, Bruel-Jungerman E et al (2014) Beta tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown. Hum Mol Genet 23:1516–1526. https://doi.org/10.1093/hmg/ddt538

    Article  CAS  PubMed  Google Scholar 

  101. Latremoliere A, Cheng L, DeLisle M et al (2018) Neuronal-specific TUBB3 is not required for normal neuronal function but is essential for timely axon regeneration. Cell Rep 24:1865–1879. https://doi.org/10.1016/j.celrep.2018.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Breuss M, Heng JIT, Poirier K et al (2012) Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep 2:1554–1562. https://doi.org/10.1016/j.celrep.2012.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Isrie M, Breuss M, Tian G et al (2015) Mutations in either TUBB or MAPRE2 cause circumferential skin creases Kunze type. Am J Hum Genet 97:790–800. https://doi.org/10.1016/j.ajhg.2015.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Breuss M, Fritz T, Gstrein T et al (2016) Mutations in the murine homologue of TUBB5 cause microcephaly by perturbing cell cycle progression and inducing p53 associated apoptosis. Development 143:1126–1133. https://doi.org/10.1242/dev.131516

    Article  CAS  PubMed  Google Scholar 

  105. Ngo L, Haas M, Qu Z et al (2014) TUBB5 and its disease-associated mutations influence the terminal differentiation and dendritic spine densities of cerebral cortical neurons. Hum Mol Genet 23:5147–5158. https://doi.org/10.1093/hmg/ddu238

    Article  CAS  PubMed  Google Scholar 

  106. Stanchi F, Corso V, Scannapieco P et al (2000) TUBA8: a new tissue-specific isoform of α-tubulin that is highly conserved in human and mouse. Biochem Biophys Res Commun 270:1111–1118. https://doi.org/10.1006/bbrc.2000.2571

    Article  CAS  PubMed  Google Scholar 

  107. Abdollahi MR, Morrison E, Sirey T et al (2009) Mutation of the variant α-tubulin TUBA8 results in polymicrogyria with optic nerve hypoplasia. Am J Hum Genet 85:737–744. https://doi.org/10.1016/j.ajhg.2009.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Braun A, Breuss M, Salzer MC et al (2010) Tuba8 is expressed at low levels in the developing mouse and human brain. Am J Hum Genet 86:819–822. https://doi.org/10.1016/j.ajhg.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Diggle CP, Martinez-Garay I, Molnar Z et al (2017) A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development. PLoS One 12:e0174264. https://doi.org/10.1371/journal.pone.0174264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim YO, Nam TS, Park C et al (2016) Familial pachygyria in both genders related to a DCX mutation. Brain Dev 38:585–589. https://doi.org/10.1016/j.braindev.2015.12.005

    Article  PubMed  Google Scholar 

  111. Alazami AM, Patel N, Shamseldin HE et al (2015) Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 10:148–161. https://doi.org/10.1016/j.celrep.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  112. Hamilton EM, Polder E, Vanderver A et al (2014) Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype–phenotype correlation. Brain 137:1921–1930. https://doi.org/10.1093/brain/awu110

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pensato V, Tiloca C, Corrado L et al (2015) TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations. J Neurol 262:1376–1378. https://doi.org/10.1007/s00415-015-7739-y

    Article  PubMed  PubMed Central  Google Scholar 

  114. Smith BN, Ticozzi N, Fallini C et al (2014) Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84:324–331. https://doi.org/10.1016/j.neuron.2014.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fourel G, Boscheron C (2020) Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 594:3409–3438. https://doi.org/10.1002/1873-3468.13958

    Article  CAS  PubMed  Google Scholar 

  116. Poirier K, Lebrun N, Broix L et al (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45:639–647. https://doi.org/10.1038/ng.2613

    Article  CAS  PubMed  Google Scholar 

  117. Poirier K, Keays DA, Francis F et al (2007) Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A ( TUBA1A ). Hum Mutat 28:1055–1064. https://doi.org/10.1002/humu.20572

    Article  CAS  PubMed  Google Scholar 

  118. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue-based map of the human proteome. Science (80- ) 347:. https://doi.org/10.1126/science.1260419

  119. Cushion TD, Dobyns WB, Mullins JGL et al (2013) Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. Brain 136:536–548. https://doi.org/10.1093/brain/aws338

    Article  PubMed  Google Scholar 

  120. Kumar RA, Pilz DT, Babatz TD et al (2010) TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 19:2817–2827. https://doi.org/10.1093/hmg/ddq182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Helbig KL, Farwell Hagman KD, Shinde DN et al (2016) Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med 18:898–905. https://doi.org/10.1038/gim.2015.186

    Article  CAS  PubMed  Google Scholar 

  122. Mencarelli A, Prontera P, Stangoni G et al (2017) Epileptogenic brain malformations and mutations in tubulin genes: a case report and review of the literature. Int J Mol Sci 18:1–7. https://doi.org/10.3390/ijms18112273

    Article  CAS  Google Scholar 

  123. Lee H, Deignan JL, Dorrani N et al (2014) Clinical exome sequencing for genetic identification of rare mendelian disorders. JAMA - J Am Med Assoc 312:1880–1887. https://doi.org/10.1001/jama.2014.14604

    Article  CAS  Google Scholar 

  124. Sato T, Kato M, Moriyama K et al (2018) A case of tubulinopathy presenting with porencephaly caused by a novel missense mutation in the TUBA1A gene. Brain Dev 40:819–823. https://doi.org/10.1016/j.braindev.2018.05.012

    Article  PubMed  Google Scholar 

  125. McMichael G, Bainbridge MN, Haan E et al (2015) Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 20:176–182. https://doi.org/10.1038/mp.2014.189

    Article  CAS  PubMed  Google Scholar 

  126. Poirier K, Saillour Y, Fourniol F et al (2013) Expanding the spectrum of TUBA1A-related cortical dysgenesis to Polymicrogyria. Eur J Hum Genet 21:381–385. https://doi.org/10.1038/ejhg.2012.195

    Article  CAS  PubMed  Google Scholar 

  127. Sanders SJ, Murtha MT, Gupta AR et al (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241. https://doi.org/10.1038/nature10945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stutterd CA, Brock S, Stouffs K et al (2021) Genetic heterogeneity of polymicrogyria: study of 123 patients using deep sequencing. Brain Commun 3:1–12. https://doi.org/10.1093/braincomms/fcaa221

    Article  CAS  Google Scholar 

  129. Hikita N, Hattori H, Kato M et al (2014) A case of TUBA1A mutation presenting with lissencephaly and Hirschsprung disease. Brain Dev 36:159–162. https://doi.org/10.1016/j.braindev.2013.02.006

    Article  PubMed  Google Scholar 

  130. Oegema R, Cushion TD, Phelps IG et al (2015) Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes. Hum Mol Genet 24:5313–5325. https://doi.org/10.1093/hmg/ddv250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fallet-Bianco C, Loeuillet L, Poirier K et al (2008) Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain 131:2304–2320. https://doi.org/10.1093/brain/awn155

    Article  PubMed  Google Scholar 

  132. Myers KA, Bello-Espinosa LE, Kherani A et al (2015) TUBA1A mutation associated with eye abnormalities in addition to brain malformation. Pediatr Neurol 53:442–444. https://doi.org/10.1016/j.pediatrneurol.2015.07.004

    Article  PubMed  Google Scholar 

  133. Sohal APS, Montgomery T, Mitra D, Ramesh V (2012) TUBA1A mutation-associated lissencephaly: case report and review of the literature. Pediatr Neurol 46:127–131. https://doi.org/10.1016/j.pediatrneurol.2011.11.017

    Article  PubMed  Google Scholar 

  134. Lecourtois M, Poirier K, Friocourt G et al (2010) Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol 119:779–789. https://doi.org/10.1007/s00401-010-0684-z

    Article  CAS  PubMed  Google Scholar 

  135. Wiszniewski W, Gawlinski P, Gambin T et al (2018) Comprehensive genomic analysis of patients with disorders of cerebral cortical development. Eur J Hum Genet 26:1121–1131. https://doi.org/10.1038/s41431-018-0137-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Neale BM, Kou Y, Liu L et al (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–245. https://doi.org/10.1038/nature11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Di Donato N, Timms AE, Aldinger KA et al (2018) Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genet Med 20:1354–1364. https://doi.org/10.1038/gim.2018.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Srivastava S, Cohen JS, Vernon H et al (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76:473–483. https://doi.org/10.1002/ana.24251

    Article  PubMed  Google Scholar 

  139. Okumura A, Hayashi M, Tsurui H et al (2013) Lissencephaly with marked ventricular dilation, agenesis of corpus callosum, and cerebellar hypoplasia caused by TUBA1A mutation. Brain Dev 35:274–279. https://doi.org/10.1016/j.braindev.2012.05.006

    Article  PubMed  Google Scholar 

  140. Zillhardt JL, Poirier K, Broix L et al (2016) Mosaic parental germline mutations causing recurrent forms of malformations of cortical development. Eur J Hum Genet 24:611–614. https://doi.org/10.1038/ejhg.2015.192

    Article  CAS  PubMed  Google Scholar 

  141. Romaniello R, Arrigoni F, Cavallini A et al (2014) Brain malformations and mutations in α- and β-tubulin genes: a review of the literature and description of two new cases. Dev Med Child Neurol 56:354–360. https://doi.org/10.1111/dmcn.12370

    Article  PubMed  Google Scholar 

  142. Zanni G, Colafati GS, Barresi S et al (2013) Description of a novel TUBA1A mutation in Arg-390 associated with asymmetrical polymicrogyria and mid-hindbrain dysgenesis. Eur J Paediatr Neurol 17:361–365. https://doi.org/10.1016/j.ejpn.2012.12.006

    Article  PubMed  Google Scholar 

  143. Bahi-Buisson N, Poirier K, Boddaert N et al (2008) Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 45:647–653. https://doi.org/10.1136/jmg.2008.058073

    Article  CAS  PubMed  Google Scholar 

  144. Jansen AC, Oostra A, Desprechins B et al (2011) TUBA1A mutations: from isolated lissencephaly to familial polymicrogyria. Neurology 76:988–992. https://doi.org/10.1212/WNL.0b013e31821043f5

    Article  CAS  PubMed  Google Scholar 

  145. Boissel S, Fallet-Bianco C, Chitayat D et al (2018) Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. Genet Med 20:745–753. https://doi.org/10.1038/gim.2017.173

    Article  CAS  PubMed  Google Scholar 

  146. Yokoi S, Ishihara N, Miya F et al (2015) TUBA1A mutation can cause a hydranencephaly-like severe form of cortical dysgenesis. Sci Rep 5:15165. https://doi.org/10.1038/srep15165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shimojima K, Narita A, Maegaki Y et al (2014) Whole-exome sequencing identifies a de novo TUBA1A mutation in a patient with sporadic malformations of cortical development: a case report. BMC Res Notes 7:465. https://doi.org/10.1186/1756-0500-7-465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Morris-Rosendahl DJ, Najm J, Lachmeijer AMA et al (2008) Refining the phenotype of α-1a tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 74:425–433. https://doi.org/10.1111/j.1399-0004.2008.01093.x

    Article  CAS  PubMed  Google Scholar 

  149. Bahi-Buisson N, Poirier K, Fourniol F et al (2014) The wide spectrum of tubulinopathies: what are the key features for the diagnosis? Brain 137:1676–1700. https://doi.org/10.1093/brain/awu082

    Article  PubMed  Google Scholar 

  150. Akter MS, Hada M, Shikata D et al (2021) CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice. Sci Rep 11:15438. https://doi.org/10.1038/s41598-021-94851-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bhagwat S, Dalvi V, Chandrasekhar D et al (2014) Acetylated α-tubulin is reduced in individuals with poor sperm motility. Fertil Steril 101:95-104.e3. https://doi.org/10.1016/j.fertnstert.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  152. Hao X, Chen P, Zhang Y et al (2017) De novo mutations of TUBA3D are associated with keratoconus. Sci Rep 7:13570. https://doi.org/10.1038/s41598-017-13162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Strassel C, Magiera MM, Dupuis A et al (2019) An essential role for α4A-tubulin in platelet biogenesis. Life Sci Alliance 2:e201900309. https://doi.org/10.26508/lsa.201900309

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kimmerlin Q, Dupuis A, Bodakuntla S et al (2022) Mutations in the most divergent α-tubulin isotype, α8-tubulin, cause defective platelet biogenesis. J Thromb Haemost 20:461–469. https://doi.org/10.1111/jth.15573

    Article  CAS  PubMed  Google Scholar 

  155. Anazi S, Maddirevula S, Faqeih E et al (2017) Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 22:615–624. https://doi.org/10.1038/mp.2016.113

    Article  CAS  PubMed  Google Scholar 

  156. Sferra A, Petrini S, Bellacchio E et al (2020) TUBB variants underlying different phenotypes result in altered vesicle trafficking and microtubule dynamics. Int J Mol Sci 21:1385. https://doi.org/10.3390/ijms21041385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Watanabe K, Nakashima M, Kumada S et al (2021) Identification of two novel de novo TUBB variants in cases with brain malformations: case reports and literature review. J Hum Genet 66:1193–1197. https://doi.org/10.1038/s10038-021-00956-4

    Article  CAS  PubMed  Google Scholar 

  158. Li D, Shen KM, Zackai EH, Bhoj EJ (2020) Clinical variability of TUBB-associated disorders: diagnosis through reanalysis. Am J Med Genet Part A 182:3035–3039. https://doi.org/10.1002/ajmg.a.61897

    Article  CAS  PubMed  Google Scholar 

  159. Chun Fang G, Kaiwei D, Lingkong Z, Xuwei T (2022) Diaphragmatic paralysis in a neonate with circumferential skin creases Kunze type. Mol Genet Genomic Med. https://doi.org/10.1002/mgg3.2003

    Article  PubMed  PubMed Central  Google Scholar 

  160. Schmidt L, Wain KE, Hajek C et al (2021) Expanding the phenotype of TUBB2A -related tubulinopathy: three cases of a novel, heterozygous TUBB2A pathogenic variant p.Gly98Arg. Mol Syndromol 12:33–40. https://doi.org/10.1159/000512160

    Article  CAS  PubMed  Google Scholar 

  161. Cai S, Li J, Wu Y, Jiang Y (2020) De novo mutations of TUBB2A cause infantile-onset epilepsy and developmental delay. J Hum Genet 65:601–608. https://doi.org/10.1038/s10038-020-0739-5

    Article  CAS  PubMed  Google Scholar 

  162. Cushion TD, Paciorkowski AR, Pilz DT et al (2014) De novo mutations in the beta-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy. Am J Hum Genet 94:634–641. https://doi.org/10.1016/j.ajhg.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rodan LH, El Achkar CM, Berry GT et al (2017) De novo TUBB2A variant presenting with anterior temporal pachygyria. J Child Neurol 32:127–131. https://doi.org/10.1177/0883073816672998

    Article  PubMed  Google Scholar 

  164. Ejaz R, Lionel AC, Blaser S et al (2017) De novo pathogenic variant in TUBB2A presenting with arthrogryposis multiplex congenita, brain abnormalities, and severe developmental delay. Am J Med Genet Part A 173:2725–2730. https://doi.org/10.1002/ajmg.a.38352

    Article  CAS  PubMed  Google Scholar 

  165. Romaniello R, Tonelli A, Arrigoni F et al (2012) A novel mutation in the β-tubulin gene TUBB2B associated with complex malformation of cortical development and deficits in axonal guidance. Dev Med Child Neurol 54:765–769. https://doi.org/10.1111/j.1469-8749.2012.04316.x

    Article  PubMed  Google Scholar 

  166. Mokánszki A, Körhegyi I, Szabó N et al (2012) Lissencephaly and band heterotopia: LIS1, TUBA1A, and DCX mutations in Hungary. J Child Neurol 27:1534–1540. https://doi.org/10.1177/0883073811436326

    Article  PubMed  Google Scholar 

  167. Citli S, Serdaroglu E (2020) Maternal germline mosaicism of a de novo TUBB2B mutation leads to complex cortical dysplasia in two siblings. Fetal Pediatr Pathol 1–11. https://doi.org/10.1080/15513815.2020.1753270

  168. Amrom D, Tanyalçin I, Verhelst H et al (2014) Polymicrogyria with dysmorphic basal ganglia? Think tubulin! Clin Genet 85:178–183. https://doi.org/10.1111/cge.12141

    Article  CAS  PubMed  Google Scholar 

  169. Yan L, Lu Z, Liu Y et al (2022) Analysis of TUBB2B gene variant in a fetus with complex cortical dysplasia with other brain malformations-7. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 39:301–304. https://doi.org/10.3760/cma.j.cn511374-20210331-00285

    Article  PubMed  Google Scholar 

  170. Wang H, Li S, Li S et al (2019) De novo mutated TUBB2B associated pachygyria diagnosed by medical exome sequencing and long-range PCR. Fetal Pediatr Pathol 38:63–71. https://doi.org/10.1080/15513815.2018.1538273

    Article  CAS  PubMed  Google Scholar 

  171. Jamuar SS, Lam A-TN, Kircher M et al (2014) Somatic mutations in cerebral cortical malformations. N Engl J Med 371:733–743. https://doi.org/10.1056/NEJMoa1314432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jimenez J, Herrera DA, Vargas SA et al (2019) β-Tubulinopathy caused by a mutation of the TUBB2B gene: magnetic resonance imaging findings of the brain. Neuroradiol J 32:148–150. https://doi.org/10.1177/1971400919828142

    Article  PubMed  PubMed Central  Google Scholar 

  173. Guerrini R, Mei D, Cordelli DM et al (2012) Symmetric polymicrogyria and pachygyria associated with TUBB2B gene mutations. Eur J Hum Genet 20:995–998. https://doi.org/10.1038/ejhg.2012.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Alby C, Malan V, Boutaud L et al (2016) Clinical, genetic and neuropathological findings in a series of 138 fetuses with a corpus callosum malformation. Birth Defects Res Part A - Clin Mol Teratol 106:36–46. https://doi.org/10.1002/bdra.23472

    Article  CAS  Google Scholar 

  175. Blumkin L, Leibovitz Z, Krajden-Haratz K et al (2020) Autosomal dominant TUBB3-related syndrome: fetal, radiologic, clinical and morphological features. Eur J Paediatr Neurol 26:46–60. https://doi.org/10.1016/j.ejpn.2020.03.001

    Article  PubMed  Google Scholar 

  176. MacKinnon S, Oystreck DT, Andrews C et al (2014) Diagnostic distinctions and genetic analysis of patients diagnosed with Moebius syndrome. Ophthalmology 121:1461–1468. https://doi.org/10.1016/j.ophtha.2014.01.006

    Article  PubMed  Google Scholar 

  177. Thomas MG, Maconachie GDE, Constantinescu CS et al (2020) Congenital monocular elevation deficiency associated with a novel TUBB3 gene variant. Br J Ophthalmol 104:547–550. https://doi.org/10.1136/bjophthalmol-2019-314293

    Article  PubMed  Google Scholar 

  178. Whitman MC, Andrews C, Chan WM et al (2016) Two unique TUBB3 mutations cause both CFEOM3 and malformations of cortical development. Am J Med Genet Part A 170:297–305. https://doi.org/10.1002/ajmg.a.37362

    Article  CAS  Google Scholar 

  179. Powis Z, Chamberlin AC, Alamillo CL et al (2018) Postmortem diagnostic exome sequencing identifies a de novo TUBB3 alteration in a newborn with prenatally diagnosed hydrocephalus and suspected Walker-Warburg syndrome. Pediatr Dev Pathol 21:319–323. https://doi.org/10.1177/1093526617698611

    Article  PubMed  Google Scholar 

  180. Lohmann K, Wilcox RA, Winkler S et al (2013) Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 73:537–545. https://doi.org/10.1002/ana.23829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Simons C, Wolf NI, McNeil N et al (2013) A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet 92:767–773. https://doi.org/10.1016/j.ajhg.2013.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Luscan R, Mechaussier S, Paul A et al (2017) Mutations in TUBB4B cause a distinctive sensorineural disease. Am J Hum Genet 101:1006–1012. https://doi.org/10.1016/j.ajhg.2017.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Feng M, Wang K, Fu S et al (2022) Tubulin TUBB4B is involved in spermatogonia proliferation and cell cycle processes. Genes (Basel) 13:1082. https://doi.org/10.3390/genes13061082

    Article  CAS  PubMed  Google Scholar 

  184. Freson K, De Vos R, Wittevrongel C et al (2005) The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 106:2356–2362. https://doi.org/10.1182/blood-2005-02-0723

    Article  CAS  PubMed  Google Scholar 

  185. Schwer HD, Lecine P, Tiwari S et al (2001) A lineage-restricted and divergent β-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr Biol 11:579–586. https://doi.org/10.1016/S0960-9822(01)00153-1

    Article  CAS  PubMed  Google Scholar 

  186. Fazeli W, Herkenrath P, Stiller B et al (2017) A TUBB6 mutation is associated with autosomal dominant non-progressive congenital facial palsy, bilateral ptosis and velopharyngeal dysfunction. Hum Mol Genet 26:4055–4066. https://doi.org/10.1093/hmg/ddx296

    Article  CAS  PubMed  Google Scholar 

  187. Feng R, Sang Q, Kuang Y et al (2016) Mutations in TUBB8 and human oocyte meiotic arrest. N Engl J Med 374:223–232. https://doi.org/10.1056/NEJMoa1510791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Park K, Hoff KJ, Wethekam L et al (2021) Kinetically stabilizing mutations in beta tubulins create isotype-specific brain malformations. Front Cell Dev Biol 9:765992. https://doi.org/10.3389/fcell.2021.765992

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial assistance received from the Department of Biotechnology, New Delhi (BT/PR26189/GET/119/226/2017) and DST-SERB, New Delhi (EMR/2017/000465). Facilities extended by SRMIST are gratefully acknowledged. Tantry MSA is supported by the INSPIRE fellowship (DST/INSPIRE Fellowship/2019/IF190200) from the Department of Science and Technology, Government of India.

Funding

Department of Biotechnology, New Delhi (BT/PR26189/GET/119/226/2017); DST-SERB, New Delhi (EMR/2017/000465) and Department of Science and Technology, Government of India (DST/INSPIRE Fellowship/2019/IF190200).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed to the conceptualization and designing the manuscript. Mr. M S Ananthakrishna Tantry prepared the first draft of the manuscript, tables, figures, and curated the data. Dr. Santhakumar Kirankumar, as a principal investigator, critically revised the manuscript, and both the authors approved the version to be published.

Corresponding author

Correspondence to Kirankumar Santhakumar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tantry, M.S.A., Santhakumar, K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 60, 3803–3823 (2023). https://doi.org/10.1007/s12035-023-03302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03302-1

Keywords

Navigation