Skip to main content

Advertisement

Log in

Corticostriatal Projections Relying on GABA Levels Mediate Exercise-Induced Functional Recovery in Cerebral Ischemic Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is a neurological disorder characterized by high disability and death worldwide. The occlusion of the middle cerebral artery (MCAO) supplying the cortical motor regions and its projection pathway regions can either kill the cortical neurons or block their projections to the spinal cord and subcortical structure. The cerebral cortex is the primary striatal afferent, and the medium spiny neurons of the striatum have been identified as the major output neurons projecting to the substantia nigra and pallidum. Thus, disconnection of the corticostriatal circuit often occurs in the model of MCAO. In this study, we hypothesize that striatal network dysfunction in cerebral ischemic mice ultimately modulates the activity of striatal projections from cortical neurons to improve dysfunction during exercise training. In this study, we observed that the corticostriatal circuit originating from glutamatergic neurons could partially medicate the improvement of motor and anxiety-like behavior in mice with exercise. Furthermore, exercising or activating a single optogenetic corticostriatal circuit can increase the striatal gamma-aminobutyric acid (GABA) level. Using the GABA-A receptor antagonist, bicuculline, we further identified that the striatal glutamatergic projection from the cortical neurons relies on the GABAergic synapse’s activity to modulate exercise-induced functional recovery. Overall, those results reveal that the dorsal striatum-projecting subpopulation of cortical glutamatergic neurons can influence GABA levels in the striatum, playing a critical role in modulating exercise-induced improvement of motor and anxiety-like behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data in the current study are available from the corresponding authors at the reasonable request.

References

  1. Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 1866:165260. https://doi.org/10.1016/j.bbadis.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Sterr A, Dean PJ, Szameitat AJ, Conforto AB, Shen S (2014) Corticospinal tract integrity and lesion volume play different roles in chronic hemiparesis and its improvement through motor practice. Neurorehabil Neural Repair 28:335–343. https://doi.org/10.1177/1545968313510972

    Article  PubMed  Google Scholar 

  3. Puig J, Blasco G, Daunis IEJ, Thomalla G, Castellanos M, Figueras J, Remollo S, van Eendenburg C, Sanchez-Gonzalez J, Serena J, Pedraza S (2013) Decreased corticospinal tract fractional anisotropy predicts long-term motor outcome after stroke. Stroke 44:2016–2018. https://doi.org/10.1161/STROKEAHA.111.000382

    Article  PubMed  Google Scholar 

  4. El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ (2019) Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. Neuroscientist 25:65–85. https://doi.org/10.1177/1073858418771538

    Article  PubMed  Google Scholar 

  5. Mang CS, Campbell KL, Ross CJ, Boyd LA (2013) Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther 93:1707–1716. https://doi.org/10.2522/ptj.20130053

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clark TA, Sullender C, Jacob D, Zuo Y, Dunn AK, Jones TA (2019) Rehabilitative training interacts with ischemia-instigated spine dynamics to promote a lasting population of new synapses in peri-infarct motor cortex. J Neurosci 39:8471–8483. https://doi.org/10.1523/JNEUROSCI.1141-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu XH, Bi HY, Cao J, Ren S, Yue SW (2019) Early constraint-induced movement therapy affects behavior and neuronal plasticity in ischemia-injured rat brains. Neural Regen Res 14:775–782. https://doi.org/10.4103/1673-5374.249225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baur D, Galevska D, Hussain S, Cohen LG, Ziemann U, Zrenner C (2020) Induction of LTD-like corticospinal plasticity by low-frequency rTMS depends on pre-stimulus phase of sensorimotor mu-rhythm. Brain Stimul 13:1580–1587. https://doi.org/10.1016/j.brs.2020.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murdoch K, Buckley JD, McDonnell MN (2016) The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PLoS One 11:e0152377. https://doi.org/10.1371/journal.pone.0152377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, Sathian K, Nichols-Larsen DS, Wolf SL, Good DC, Wittenberg GF (2008) Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair 22:505–513. https://doi.org/10.1177/1545968308317531

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Hu Q, Xie Q, Wu S, Pang Q, Liu M, Zhao Y, Tu F, Liu C, Chen X (2019) Effects of treadmill exercise on motor and cognitive function recovery of MCAO mice through the Caveolin-1/VEGF signaling pathway in ischemic penumbra. Neurochem Res 44:930–946. https://doi.org/10.1007/s11064-019-02728-1

    Article  CAS  PubMed  Google Scholar 

  12. Wahl AS, Buchler U, Brandli A, Brattoli B, Musall S, Kasper H, Ineichen BV, Helmchen F, Ommer B, Schwab ME (2017) Optogenetically stimulating intact rat corticospinal tract post-stroke restores motor control through regionalized functional circuit formation. Nat Commun 8:1187. https://doi.org/10.1038/s41467-017-01090-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Foster NN, Barry J, Korobkova L, Garcia L, Gao L, Becerra M, Sherafat Y, Peng B, Li X, Choi JH, Gou L, Zingg B, Azam S, Lo D, Khanjani N, Zhang B, Stanis J, Bowman I, Cotter K, Cao C, Yamashita S, Tugangui A, Li A, Jiang T, Jia X, Feng Z, Aquino S, Mun HS, Zhu M, Santarelli A, Benavidez NL, Song M, Dan G, Fayzullina M, Ustrell S, Boesen T, Johnson DL, Xu H, Bienkowski MS, Yang XW, Gong H, Levine MS, Wickersham I, Luo Q, Hahn JD, Lim BK, Zhang LI, Cepeda C, Hintiryan H, Dong HW (2021) The mouse cortico-basal ganglia-thalamic network. Nature 598:188–194. https://doi.org/10.1038/s41586-021-03993-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kase D, Uta D, Ishihara H, Imoto K (2015) Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice. Neurosci Res 97:26–35. https://doi.org/10.1016/j.neures.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  15. Semba K, Fibiger HC, Vincent SR (1987) Neurotransmitters in the mammalian striatum: neuronal circuits and heterogeneity. Can J Neurol Sci 14:386–394. https://doi.org/10.1017/s0317167100037781

    Article  CAS  PubMed  Google Scholar 

  16. Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209. https://doi.org/10.1016/0006-8993(75)90384-4

    Article  CAS  PubMed  Google Scholar 

  17. Haber SN (2016) Corticostriatal circuitry. Dialogues Clin Neurosci 18:7–21

    Article  PubMed  PubMed Central  Google Scholar 

  18. Plotkin JL, Surmeier DJ (2015) Corticostriatal synaptic adaptations in Huntington’s disease. Curr Opin Neurobiol 33:53–62. https://doi.org/10.1016/j.conb.2015.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jean-Richard-Dit-Bressel P, Killcross S, McNally GP (2018) Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology 43:1639–1650. https://doi.org/10.1038/s41386-018-0047-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, Shmelkov E, Kushner JS, Baljevic M, Dincheva I, Murphy AJ, Valenzuela DM, Gale NW, Yancopoulos GD, Ninan I, Lee FS, Rafii S (2010) Slitrk5 deficiency impairs corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med 16:598–602, 591p following 602. https://doi.org/10.1038/nm.2125

  21. Gao BY, Cao YX, Fu PF, Xing Y, Liang D, Jiang S, Xie YX, Li M (2022) Optogenetics stimulates nerve reorganization in the contralesional anterolateral primary motor cortex in a mouse model of ischemic stroke. Neural Regen Res 17:1535–1544. https://doi.org/10.4103/1673-5374.330615

    Article  PubMed  Google Scholar 

  22. Wang R, Pu H, Ye Q, Jiang M, Chen J, Zhao J, Li S, Liu Y, Hu X, Rocha M, Jadhav AP, Chen J, Shi Y (2020) Transforming growth factor beta-activated kinase 1-dependent microglial and macrophage responses aggravate long-term outcomes after ischemic stroke. Stroke 51:975–985. https://doi.org/10.1161/STROKEAHA.119.028398

    Article  CAS  PubMed  Google Scholar 

  23. Bieber M, Gronewold J, Scharf AC, Schuhmann MK, Langhauser F, Hopp S, Mencl S, Geuss E, Leinweber J, Guthmann J, Doeppner TR, Kleinschnitz C, Stoll G, Kraft P, Hermann DM (2019) Validity and reliability of neurological scores in mice exposed to middle cerebral artery occlusion. Stroke 50:2875–2882. https://doi.org/10.1161/STROKEAHA.119.026652

    Article  PubMed  Google Scholar 

  24. Bo B, Li W, Wang Y, Li Y, Tong S (2017) Hemodynamic response to optogenetic stimulation varied under different stimulus parameters. Annu Int Conf IEEE Eng Med Biol Soc 2017:4022–4025. https://doi.org/10.1109/EMBC.2017.8037738

    Article  CAS  PubMed  Google Scholar 

  25. Setsuie R, Tamura K, Miyamoto K, Watanabe T, Takeda M, Miyashita Y (2020) off-peak 594-nm light surpasses on-peak 532-nm light in silencing distant ArchT-expressing neurons in vivo. iScience 23:101276. https://doi.org/10.1016/j.isci.2020.101276

  26. Zhang Q, Wu JF, Shi QL, Li MY, Wang CJ, Wang X, Wang WY, Wu Y (2019) The neuronal activation of deep cerebellar nuclei is essential for environmental enrichment-induced post-stroke motor recovery. Aging Dis 10:530–543. https://doi.org/10.14336/AD.2018.1220

  27. Gao BY, Xu DS, Liu PL, Li C, Du L, Hua Y, Hu J, Hou JY, Bai YL (2020) Modified constraint-induced movement therapy alters synaptic plasticity of rat contralateral hippocampus following middle cerebral artery occlusion. Neural Regen Res 15:1045–1057. https://doi.org/10.4103/1673-5374.270312

    Article  CAS  PubMed  Google Scholar 

  28. Wang T, Wang J, Yin C, Liu R, Zhang JH, Qin X (2010) Down-regulation of Nogo receptor promotes functional recovery by enhancing axonal connectivity after experimental stroke in rats. Brain Res 1360:147–158. https://doi.org/10.1016/j.brainres.2010.08.101

    Article  CAS  PubMed  Google Scholar 

  29. Magno LAV, Tenza-Ferrer H, Collodetti M, Aguiar MFG, Rodrigues APC, da Silva RS, Silva JDP, Nicolau NF, Rosa DVF, Birbrair A, Miranda DM, Romano-Silva MA (2019) Optogenetic stimulation of the M2 cortex reverts motor dysfunction in a mouse model of Parkinson’s disease. J Neurosci 39:3234–3248. https://doi.org/10.1523/JNEUROSCI.2277-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359. https://doi.org/10.1126/science.1167093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tennant KA, Taylor SL, White ER, Brown CE (2017) Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat Commun 8:15879. https://doi.org/10.1038/ncomms15879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Garcia S, Conde-Berriozabal S, Garcia-Garcia E, Gort-Paniello C, Bernal-Casas D, Garcia-Diaz Barriga G, Lopez-Gil J, Munoz-Moreno E, Soria G, Campa L, Artigas F, Rodriguez MJ, Alberch J, Masana M (2020) M2 cortex-dorsolateral striatum stimulation reverses motor symptoms and synaptic deficits in Huntington’s disease. Elife 9. https://doi.org/10.7554/eLife.57017

  33. Fuchikami M, Thomas A, Liu R, Wohleb ES, Land BB, DiLeone RJ, Aghajanian GK, Duman RS (2015) Optogenetic stimulation of infralimbic PFC reproduces ketamine’s rapid and sustained antidepressant actions. Proc Natl Acad Sci U S A 112:8106–8111. https://doi.org/10.1073/pnas.1414728112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Broderick P, Horgan F, Blake C, Ehrensberger M, Simpson D, Monaghan K (2019) Mirror therapy and treadmill training for patients with chronic stroke: a pilot randomized controlled trial. Top Stroke Rehabil 26:163–172. https://doi.org/10.1080/10749357.2018.1556504

    Article  CAS  PubMed  Google Scholar 

  35. Chang KW, Lin CM, Yen CW, Yang CC, Tanaka T, Guo LY (2021) The effect of walking backward on a treadmill on balance, speed of walking and cardiopulmonary fitness for patients with chronic stroke: a pilot study. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18052376

  36. Xu Y, Yao Y, Lyu H, Ng S, Xu Y, Poon WS, Zheng Y, Zhang S, Hu X (2020) Rehabilitation effects of fatigue-controlled treadmill training after stroke: a rat model study. Front Bioeng Biotechnol 8:590013. https://doi.org/10.3389/fbioe.2020.590013

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hong M, Kim M, Kim TW, Park SS, Kim MK, Park YH, Sung YH, Shin MS (2020) Treadmill exercise improves motor function and short-term memory by enhancing synaptic plasticity and neurogenesis in photothrombotic stroke mice. Int Neurourol J 24:S28-38. https://doi.org/10.5213/inj.2040158.079

    Article  PubMed  PubMed Central  Google Scholar 

  38. Holschneider DP, Yang J, Guo Y, Maarek JM (2007) Reorganization of functional brain maps after exercise training: importance of cerebellar-thalamic-cortical pathway. Brain Res 1184:96–107. https://doi.org/10.1016/j.brainres.2007.09.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xing Y, Bai Y (2020) A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol 57:4218–4231. https://doi.org/10.1007/s12035-020-02021-1

    Article  CAS  PubMed  Google Scholar 

  40. Di Filippo M, Picconi B, Tantucci M, Ghiglieri V, Bagetta V, Sgobio C, Tozzi A, Parnetti L, Calabresi P (2009) Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Behav Brain Res 199:108–118. https://doi.org/10.1016/j.bbr.2008.09.025

    Article  PubMed  Google Scholar 

  41. Song M, Yu SP, Mohamad O, Cao W, Wei ZZ, Gu X, Jiang MQ, Wei L (2017) Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol Dis 98:9–24. https://doi.org/10.1016/j.nbd.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  42. Amani M, Mohammadian F, Golitabari N, Salari AA (2022) Postnatal GABAA Receptor activation alters synaptic plasticity and cognition in adult Wistar rats. Mol Neurobiol 59:3585–3599. https://doi.org/10.1007/s12035-022-02805-7

    Article  CAS  PubMed  Google Scholar 

  43. Deidda G, Bozarth IF, Cancedda L (2014) Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 8:119. https://doi.org/10.3389/fncel.2014.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salari AA, Amani M (2017) Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice. Int J Dev Neurosci 57:62–71. https://doi.org/10.1016/j.ijdevneu.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  45. Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RL (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221. https://doi.org/10.1093/brain/awl243

    Article  PubMed  Google Scholar 

  46. Mednick SC, McDevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, Drummond SP (2013) The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci 33:4494–4504. https://doi.org/10.1523/JNEUROSCI.3127-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Etherington LA, Mihalik B, Palvolgyi A, Ling I, Pallagi K, Kertesz S, Varga P, Gunn BG, Brown AR, Livesey MR, Monteiro O, Belelli D, Barkoczy J, Spedding M, Gacsalyi I, Antoni FA, Lambert JJ (2017) Selective inhibition of extra-synaptic alpha5-GABAA receptors by S44819, a new therapeutic agent. Neuropharmacology 125:353–364. https://doi.org/10.1016/j.neuropharm.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  48. He X, Lu Y, Lin X, Jiang L, Tang Y, Tang G, Chen X, Zhang Z, Wang Y, Yang GY (2017) Optical inhibition of striatal neurons promotes focal neurogenesis and neurobehavioral recovery in mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab 37:837–847. https://doi.org/10.1177/0271678X16642242

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number 81871841).

Author information

Authors and Affiliations

Authors

Contributions

Study design and conception: Ying Xing, Zhanzhuang Tian, Yulong Bai; major experimental implementation: Ying Xing, Anjing Zhang; behavioral tests and data analysis: Congqin Li, Jing Han, Xue Chun Chang; manuscript writing: Ying Xing, Jun Wang, Lu Luo; manuscript revision: Ying Xing, Anjing Zhang. All authors approved the final manuscript before submission for publication.

Corresponding authors

Correspondence to Zhanzhuang Tian or Yulong Bai.

Ethics declarations

Ethics Approval

The present study was approved by the Institutional Animal Care and Use Committee of Fudan University (2020 Huashan hospital JS-152).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ying Xing and Anjing Zhang are co-first athors and contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 389 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Zhang, A., Li, C. et al. Corticostriatal Projections Relying on GABA Levels Mediate Exercise-Induced Functional Recovery in Cerebral Ischemic Mice. Mol Neurobiol 60, 1836–1853 (2023). https://doi.org/10.1007/s12035-022-03181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03181-y

Keywords

Navigation