Skip to main content

Advertisement

Log in

BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article.

Abbreviations

ANOVA:

Analysis of variance

BMSC-Exos:

BMSC-derived exosomes

BMSCs:

Bone marrow-derived MSCs

CCK-8:

Cell counting kit 8

ChIP:

Chromatin immunoprecipitation

DAPI:

4′-6-Diamidino-2-phenylindole

EdU:

5-Ethynyl-2′-deoxyuridine

FBS:

Fetal bovine serum

FOXD1:

Forkhead box D1

Gal-3:

Galectin-3

H&E:

Hematoxylin and eosin

HLA-DR:

Human leukocyte antigen DR

H/R:

Hypoxia/reoxygenation

Hsp70:

Heat shock protein

I/R:

Ischemia/reperfusion

LMECs:

Lung microvascular endothelial cells

lncRNAs:

Long non-coding RNAs

MEG3:

Maternally expressed gene 3

MSCs:

Mesenchymal stem cells

NTA:

Nanoparticle tracking analysis

PBS:

Phosphate-buffered saline

PTBP1:

Polypyrimidine tract-binding protein 1

qRT-PCR:

Quantitative real-time PCR

RBPs:

RNA-binding proteins

RIP:

RNA immunoprecipitation

shNC:

Negative control shRNA

TSG101:

Tumor susceptibility gene 101

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling

UPF1:

Up-frameshift 1

W/D:

Wet/dry

XIST:

X-inactive-specific transcript

ZFAS1:

Zinc finger antisense 1

ZFPM2-AS1:

Zinc finger protein multitype 2 antisense RNA 1

References

  1. den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL (2010) Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 299(5):H1283-1299. https://doi.org/10.1152/ajpheart.00251.2010

    Article  CAS  Google Scholar 

  2. Porteous MK, Diamond JM, Christie JD (2015) Primary graft dysfunction: lessons learned about the first 72 h after lung transplantation. Curr Opin Organ Transplant 20(5):506–514. https://doi.org/10.1097/MOT.0000000000000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schroder K, Brandes RP, Gudermann T, Sommer N, Weissmann N (2017) Lung ischaemia-reperfusion injury: the role of reactive oxygen species. Adv Exp Med Biol 967:195–225. https://doi.org/10.1007/978-3-319-63245-2_12

    Article  CAS  PubMed  Google Scholar 

  4. Laubach VE, Sharma AK (2016) Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant 21(3):246–252. https://doi.org/10.1097/MOT.0000000000000304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P, Kanou T, Saito T, Lam R, Coutinho R, Caldarone L, Juvet S, Martinu T, Iyer RK, Davies JE, Hwang DM, Waddell TK, Cypel M, Liu M, Keshavjee S (2019) Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant 38(11):1214–1223. https://doi.org/10.1016/j.healun.2019.07.006

    Article  PubMed  Google Scholar 

  6. Podesta MA, Remuzzi G, Casiraghi F (2020) Mesenchymal stromal cell therapy in solid organ transplantation. Front Immunol 11:618243. https://doi.org/10.3389/fimmu.2020.618243

    Article  CAS  PubMed  Google Scholar 

  7. Lazar E, Benedek T, Korodi S, Rat N, Lo J, Benedek I (2018) Stem cell-derived exosomes - an emerging tool for myocardial regeneration. World J Stem Cells 10(8):106–115. https://doi.org/10.4252/wjsc.v10.i8.106

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li JW, Wei L, Han Z, Chen Z (2019) Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur J Pharmacol 852:68–76. https://doi.org/10.1016/j.ejphar.2019.01.022

    Article  CAS  PubMed  Google Scholar 

  10. Massa M, Croce S, Campanelli R, Abba C, Lenta E, Valsecchi C, Avanzini MA (2020) Clinical applications of mesenchymal stem/stromal cell derived extracellular vesicles: therapeutic potential of an acellular product. Diagnostics (Basel) 10(12):E999. https://doi.org/10.3390/diagnostics10120999

    Article  CAS  Google Scholar 

  11. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  12. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9

    Article  CAS  PubMed  Google Scholar 

  13. Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21(5):542–551. https://doi.org/10.1038/s41556-019-0311-8

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Wei L, Han Z, Chen Z, Zhang Q (2020) Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism. EBioMedicine 52:102600. https://doi.org/10.1016/j.ebiom.2019.102600

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang Y, Zhang W (2021) LncRNA ZFAS1 plays a role in regulating the inflammatory responses in sepsis-induced acute lung injury via mediating miR-193a-3p. Infect Genet Evol 92:104860. https://doi.org/10.1016/j.meegid.2021.104860

    Article  CAS  PubMed  Google Scholar 

  16. Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Zhang P, Qian H, Jiang PC, Xu WR, Zhang X (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143(6):991–1004. https://doi.org/10.1007/s00432-017-2361-2

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 65(2):604–615. https://doi.org/10.1002/hep.28882

    Article  CAS  PubMed  Google Scholar 

  18. Azzalin CM, Lingner J (2006) The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol 16(4):433–439. https://doi.org/10.1016/j.cub.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  19. Li CH, Chang YC, Hsiao M, Liang SM (2019) FOXD1 and Gal-3 form a positive regulatory loop to regulate lung cancer aggressiveness. Cancers (Basel) 11(12):E1897. https://doi.org/10.3390/cancers11121897

    Article  CAS  Google Scholar 

  20. Eslaminejad MB, Nadri S (2009) Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization. In Vitro Cell Dev Biol Anim 45(8):451–459. https://doi.org/10.1007/s11626-009-9198-1

    Article  CAS  PubMed  Google Scholar 

  21. Zeng Q, Zhou Y, Liang D, He H, Liu X, Zhu R, Zhang M, Luo X, Wang Y, Huang G (2020) Exosomes secreted from bone marrow mesenchymal stem cells attenuate oxygen-glucose deprivation/reoxygenation-induced pyroptosis in PC12 cells by promoting AMPK-dependent autophagic flux. Front Cell Neurosci 14:182. https://doi.org/10.3389/fncel.2020.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephens RS, Rentsendorj O, Servinsky LE, Moldobaeva A, Damico R, Pearse DB (2010) cGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 299(3):L323-333. https://doi.org/10.1152/ajplung.00442.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE (2018) Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 315(2):L301–L312. https://doi.org/10.1152/ajplung.00004.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu Y, Li X, Cheng Y, Yang M, Wang R (2020) Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J 34(12):16262–16275. https://doi.org/10.1096/fj.202001758R

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Ji P, Wang R, Zhao L, Xia Z (2012) TRPV1 agonist capsaicin attenuates lung ischemia-reperfusion injury in rabbits. J Surg Res 173(1):153–160. https://doi.org/10.1016/j.jss.2010.08.053

    Article  CAS  PubMed  Google Scholar 

  26. Luo N, Liu J, Chen Y, Li H, Hu Z, Abbott GW (2018) Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PLoS One 13(5):e0196186. https://doi.org/10.1371/journal.pone.0196186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Silva AM, Teixeira JH, Almeida MI, Goncalves RM, Barbosa MA, Santos SG (2017) Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. Eur J Pharm Sci 98:86–95. https://doi.org/10.1016/j.ejps.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  28. Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, He X, Zhang F, Han J (2018) Exosome-mediated transfer of lncRNASNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 53(3):1013–1026. https://doi.org/10.3892/ijo.2018.4467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Q, Liu Y, Ding X, Li Q, Qiu F, Wang M, Shen Z, Zheng H, Fu G (2020) Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol Cell Biochem 465(1–2):103–114. https://doi.org/10.1007/s11010-019-03671-z

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y (2020) lncRNA ZFAS1 improves neuronal injury and inhibits inflammation, oxidative stress, and apoptosis by sponging miR-582 and upregulating NOS3 expression in cerebral ischemia/reperfusion injury. Inflammation 43(4):1337–1350. https://doi.org/10.1007/s10753-020-01212-1

    Article  CAS  PubMed  Google Scholar 

  31. Janakiraman H, House RP, Gangaraju VK, Diehl JA, Howe PH, Palanisamy V (2018) The Long (lncRNA) and short (miRNA) of It: TGFbeta-mediated control of RNA-binding proteins and noncoding RNAs. Mol Cancer Res 16(4):567–579. https://doi.org/10.1158/1541-7786.MCR-17-0547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dehecq M, Decourty L, Namane A, Proux C, Kanaan J, Le Hir H, Jacquier A, Saveanu C (2018) Nonsense-mediated mRNA decay involves two distinct Upf1-bound complexes. EMBO J 37 (21). e99278 https://doi.org/10.15252/embj.201899278

  33. Han S, Cao D, Sha J, Zhu X, Chen D (2020) LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Mol Oncol 14(5):1074–1088. https://doi.org/10.1002/1878-0261.12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10(4):233–240. https://doi.org/10.1038/nrg2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mu L, Zhang J, Wu Z, Huang J, Cui Y (2022) FOXD1 Regulates the sensitivity of cetuximab by regulating the expression of EGFR in head and neck squamous cell cancer. J Healthc Eng 2022:6108241. https://doi.org/10.1155/2022/6108241

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bond KH, Fetting JL, Lary CW, Emery IF, Oxburgh L (2021) FOXD1 regulates cell division in clear cell renal cell carcinoma. BMC Cancer 21(1):312. https://doi.org/10.1186/s12885-021-07957-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin L, Peng SL (2006) Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1. J Immunol 176(8):4793–4803. https://doi.org/10.4049/jimmunol.176.8.4793

    Article  CAS  PubMed  Google Scholar 

  38. Meng F, Liu Y, Chen Q, Ma Q, Gu S, Cui R, Cao R, Zhao M (2020) METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation. Am J Physiol Renal Physiol 319(5):F839–F847. https://doi.org/10.1152/ajprenal.00222.2020

    Article  CAS  PubMed  Google Scholar 

  39. Perillo NL, Marcus ME, Baum LG (1998) Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med (Berl) 76(6):402–412. https://doi.org/10.1007/s001090050232

    Article  CAS  PubMed  Google Scholar 

  40. Liu FT (2005) Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136(4):385–400. https://doi.org/10.1159/000084545

    Article  CAS  PubMed  Google Scholar 

  41. Liu FT, Hsu DK (2007) The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect 20(7):455–460. https://doi.org/10.1358/dnp.2007.20.7.1149628

    Article  CAS  PubMed  Google Scholar 

  42. Sunil VR, Francis M, Vayas KN, Cervelli JA, Choi H, Laskin JD, Laskin DL (2015) Regulation of ozone-induced lung inflammation and injury by the beta-galactoside-binding lectin galectin-3. Toxicol Appl Pharmacol 284(2):236–245. https://doi.org/10.1016/j.taap.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levin BS, Chang MG, Bittner EA (2021) Teleguidance technology for endotracheal intubation: a scoping review. Crit Care Explor 3(12):e0582. https://doi.org/10.1097/CCE.0000000000000582

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported in part by Changzhou HighLevel Medical Talents Training Project (KY20221373 and KY20221357) and the Major Program of Science and Technology Project of Changzhou Health Commission (ZD202206).

Author information

Authors and Affiliations

Authors

Contributions

Cao Gao: Conceptualization, Writing-original draft preparation, Investigation, Validation, Visualization, Methodology.

Yan-Jie Xu: Software.

Zhi-xiu Meng: Methodology.

Shuang Gu: Data curation.

Lei Zhang: Visualization.

Liang Zheng: Conceptualization, Writing-original draft preparation, Supervision, Writing-reviewing and editing.

Corresponding author

Correspondence to Liang Zheng.

Ethics declarations

Ethics Approval and Consent to Participate

The lungs were harvested after euthanasia by overdose of sodium pentobarbital. All procedures were approved by the Animal Care and Use Committee of the Third Affiliated Hospital of Soochow University.

Consent for Publication

The informed consent obtained from study participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Xu, YJ., Meng, Zx. et al. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 60, 2379–2396 (2023). https://doi.org/10.1007/s12035-022-03129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03129-2

Keywords

Navigation