Skip to main content

Advertisement

Log in

Comprehensive Analysis of Blood-Based m6A Methylation in Human Ischemic Stroke

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations of N6-methyladenosine (m6A) methylation have been reported in the cerebral cortices of mouse and rat models of ischemic stroke (IS). However, the role of m6A methylation in human IS is still unknown. We assessed m6A levels in peripheral blood from patients with IS and healthy controls. A transient middle cerebral artery occlusion and reperfusion (tMCAO/R) mouse model, and an oxygen–glucose deprivation/reperfusion (OGD/R) model in A172 cells were established to further assess m6A levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing were performed in the peripheral blood of patients with IS and healthy controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify underlying biological processes. In this study, we found that global m6A levels were elevated in the peripheral blood of patients with IS, in the cerebral cortex of mice after tMCAO/R treatment and in A172 cells after OGD/R treatment. MeRIP-seq analysis identified 2115 altered m6A peaks in patients with IS, 1052 upregulated and 1063 downregulated. Downregulated methylated mRNAs were enriched in Hippo signaling pathway, cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, etc. Upregulated methylated mRNAs were enriched in calcium signaling pathways, Hedgehog signaling pathway, MAPK signaling pathway, etc. Moreover, a total of 84 differentially expressed mRNAs with altered m6A peaks were identified and enriched in EGFR tyrosine kinase inhibitor, Hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This study is the first to profile the transcriptome-wide m6A methylome of peripheral blood in human IS and uncover increased global m6A levels in the peripheral blood of patients with IS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data in this study are available from the corresponding author upon reasonable request.

References

  1. Collaborators GBDS (2021) Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20(10):795–820. https://doi.org/10.1016/S1474-4422(21)00252-0

    Article  Google Scholar 

  2. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L et al (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394(10204):1145–1158. https://doi.org/10.1016/S0140-6736(19)30427-1

    Article  Google Scholar 

  3. Ma Q, Li R, Wang L, Yin P, Wang Y, Yan C, Ren Y, Qian Z et al (2021) Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: an analysis for the global burden of disease study 2019. Lancet Public health 6(12):e897–e906. https://doi.org/10.1016/S2468-2667(21)00228-0

    Article  Google Scholar 

  4. Liu L, Chen W, Zhou H, Duan W, Li S, Huo X, Xu W, Huang L et al (2020) Chinese stroke association guidelines for clinical management of cerebrovascular disorders: executive summary and 2019 update of clinical management of ischaemic cerebrovascular diseases. Stroke Vasc Neurol 5(2):159–176. https://doi.org/10.1136/svn-2020-000378

    Article  Google Scholar 

  5. Mendelson SJ, Prabhakaran S (2021) Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. JAMA 325(11):1088–1098. https://doi.org/10.1001/jama.2020.26867

    Article  CAS  Google Scholar 

  6. Saini V, Guada L, Yavagal DR (2021) Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 97(20 Suppl 2):S6–S16. https://doi.org/10.1212/WNL.0000000000012781

    Article  Google Scholar 

  7. Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20(10):608–624. https://doi.org/10.1038/s41580-019-0168-5

    Article  CAS  Google Scholar 

  8. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15(5):293–306. https://doi.org/10.1038/nrg3724

    Article  CAS  Google Scholar 

  9. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74(4):640–650. https://doi.org/10.1016/j.molcel.2019.04.025

    Article  CAS  Google Scholar 

  10. Chang H, Yang J, Wang Q, Zhao J, Zhu R (2022) Role of N6-methyladenosine modification in pathogenesis of ischemic stroke. Expert Rev Mol Diagn 22(3):295–303. https://doi.org/10.1080/14737159.2022.2049246

    Article  CAS  Google Scholar 

  11. Chokkalla AK, Mehta SL, Kim T, Chelluboina B, Kim J, Vemuganti R (2019) Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain. Stroke 50(10):2912–2921. https://doi.org/10.1161/STROKEAHA.119.026433

    Article  CAS  Google Scholar 

  12. Yi D, Wang Q, Zhao Y, Song Y, You H, Wang J, Liu R, Shi Z et al (2021) Alteration of N (6) -methyladenosine mRNA methylation in a rat model of cerebral ischemia-reperfusion injury. Front Neurosci 15:605654. https://doi.org/10.3389/fnins.2021.605654

    Article  Google Scholar 

  13. Xu K, Mo Y, Li D, Yu Q, Wang L, Lin F, Kong C, Balelang MF et al (2020) N(6)-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury. Therapeutic Adv Chronic Dis 11:2040622320916024. https://doi.org/10.1177/2040622320916024

    Article  CAS  Google Scholar 

  14. Si W, Li Y, Ye S, Li Z, Liu Y, Kuang W, Chen D, Zhu M (2020) Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front Mol Neurosci 13:103. https://doi.org/10.3389/fnmol.2020.00103

    Article  CAS  Google Scholar 

  15. Zhang Z, Wang Q, Zhao X, Shao L, Liu G, Zheng X, Xie L, Zhang Y et al (2020) YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA. Cell Death Dis 11(11):977. https://doi.org/10.1038/s41419-020-03186-2

    Article  CAS  Google Scholar 

  16. Zheng L, Tang X, Lu M, Sun S, Xie S, Cai J, Zan J (2020) microRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting m6A Reader YTHDF1 to inhibit p65 mRNA translation. Int Immunopharmacol 88:106937. https://doi.org/10.1016/j.intimp.2020.106937

    Article  CAS  Google Scholar 

  17. Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs AL, Giese AL et al (2018) Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet 50(4):524–537. https://doi.org/10.1038/s41588-018-0058-3

    Article  CAS  Google Scholar 

  18. Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX et al (2017) Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain. Open Biol 7 (9). https://doi.org/10.1098/rsob.170166

  19. Mathoux J, Henshall DC, Brennan GP (2021) Regulatory mechanisms of the RNA modification m(6)A and significance in brain function in health and disease. Front Cell Neurosci 15:671932. https://doi.org/10.3389/fncel.2021.671932

    Article  CAS  Google Scholar 

  20. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  Google Scholar 

  21. He L, Li H, Wu A, Peng Y, Shu G, Yin G (2019) Functions of N6-methyladenosine and its role in cancer. Mol Cancer 18(1):176. https://doi.org/10.1186/s12943-019-1109-9

    Article  Google Scholar 

  22. Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A (2020) Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci 21 (18). https://doi.org/10.3390/ijms21186454

  23. Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I et al (2015) Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 9:147. https://doi.org/10.3389/fnins.2015.00147

    Article  Google Scholar 

  24. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  Google Scholar 

  25. Liu C, Liu S, Xiong L, Zhang L, Li X, Cao X, Xue J, Li L et al (2021) Genistein-3’-sodium sulfonate attenuates neuroinflammation in stroke rats by down-regulating microglial M1 polarization through alpha7nAChR-NF-kappaB signaling pathway. Int J Biol Sci 17(4):1088–1100. https://doi.org/10.7150/ijbs.56800

    Article  CAS  Google Scholar 

  26. Gong P, Zou Y, Zhang W, Tian Q, Han S, Xu Z, Chen Q, Wang X et al (2021) The neuroprotective effects of insulin-like growth factor 1 via the hippo/YAP signaling pathway are mediated by the PI3K/AKT cascade following cerebral ischemia/reperfusion injury. Brain Res Bull 177:373–387. https://doi.org/10.1016/j.brainresbull.2021.10.017

    Article  CAS  Google Scholar 

  27. Arumugam TV, Baik SH, Balaganapathy P, Sobey CG, Mattson MP, Jo DG (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 165–167:103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002

    Article  CAS  Google Scholar 

  28. Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57(7):767–776. https://doi.org/10.1002/glia.20804

    Article  Google Scholar 

  29. Li H, Xie Y, Zhang N, Yu Y, Zhang Q, Ding S (2015) Disruption of IP(3)R2-mediated Ca(2)(+) signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58(6):565–576. https://doi.org/10.1016/j.ceca.2015.09.004

    Article  CAS  Google Scholar 

  30. Liu L, Zhao B, Xiong X, Xia Z (2018) The neuroprotective roles of sonic hedgehog signaling pathway in ischemic stroke. Neurochem Res 43(12):2199–2211. https://doi.org/10.1007/s11064-018-2645-1

    Article  CAS  Google Scholar 

  31. Sun J, Nan G (2016) The mitogen-activated protein kinase (MAPK) signaling pathway as a discovery target in stroke. J Mol Neurosci 59(1):90–98. https://doi.org/10.1007/s12031-016-0717-8

    Article  CAS  Google Scholar 

  32. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu S (2022) Interleukins and ischemic stroke. Front Immunol 13:828447. https://doi.org/10.3389/fimmu.2022.828447

    Article  CAS  Google Scholar 

  33. Boraschi D, Italiani P, Weil S, Martin MU (2018) The family of the interleukin-1 receptors. Immunol Rev 281(1):197–232. https://doi.org/10.1111/imr.12606

    Article  CAS  Google Scholar 

  34. Schluter T, Schelmbauer C, Karram K, Mufazalov IA (2018) Regulation of IL-1 signaling by the decoy receptor IL-1R2. J Mol Med 96(10):983–992. https://doi.org/10.1007/s00109-018-1684-z

    Article  CAS  Google Scholar 

  35. Singh S, Rai G (2022) Structural insights into the IL12:IL12 receptor complex assembly by molecular modeling, docking, and molecular dynamics simulation. Comb Chem High Throughput Screening 25(4):677–688. https://doi.org/10.2174/1386207323666201207113745

    Article  CAS  Google Scholar 

  36. Luque A, Turu M, Juan-Babot O, Cardona P, Font A, Carvajal A, Slevin M, Iborra E et al (2008) Overexpression of hypoxia/inflammatory markers in atherosclerotic carotid plaques. Front Biosci 13:6483–6490. https://doi.org/10.2741/3168

    Article  CAS  Google Scholar 

  37. Fan Q, Zhou J, Wang Y, Xi T, Ma H, Wang Z, Xiao W, Liu Q (2020) Chip-based serum proteomics approach to reveal the potential protein markers in the sub-acute stroke patients receiving the treatment of Ginkgo diterpene lactone meglumine injection. J Ethnopharmacol 260:112964. https://doi.org/10.1016/j.jep.2020.112964

    Article  CAS  Google Scholar 

  38. Rochette L, Zeller M, Cottin Y, Vergely C (2020) Insights into mechanisms of GDF15 and receptor GFRAL: therapeutic targets. Trends Endocrinol Metab 31(12):939–951. https://doi.org/10.1016/j.tem.2020.10.004

    Article  CAS  Google Scholar 

  39. Yin J, Zhu Z, Guo D, Wang A, Zeng N, Zheng X, Peng Y, Zhong C et al (2019) Increased growth differentiation factor 15 is associated with unfavorable clinical outcomes of acute ischemic stroke. Clin Chem 65(4):569–578. https://doi.org/10.1373/clinchem.2018.297879

    Article  CAS  Google Scholar 

  40. Luo J, Xu T, Sun K (2021) N6-methyladenosine RNA modification in inflammation: roles, mechanisms, and applications. Front Cell Dev Biol 9:670711. https://doi.org/10.3389/fcell.2021.670711

    Article  Google Scholar 

  41. Lambertsen KL, Finsen B, Clausen BH (2019) Post-stroke inflammation-target or tool for therapy? Acta Neuropathol 137(5):693–714. https://doi.org/10.1007/s00401-018-1930-z

    Article  Google Scholar 

  42. Naiki T, Kondo T, Nakada D, Matsumoto K, Sugimoto K (2001) Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol Cell Biol 21(17):5838–5845. https://doi.org/10.1128/MCB.21.17.5838-5845.2001

    Article  CAS  Google Scholar 

  43. Fujisawa R, Ohashi E, Hirota K, Tsurimoto T (2017) Human CTF18-RFC clamp-loader complexed with non-synthesising DNA polymerase epsilon efficiently loads the PCNA sliding clamp. Nucleic Acids Res 45(8):4550–4563. https://doi.org/10.1093/nar/gkx096

    Article  CAS  Google Scholar 

  44. Zhang Z, He J, Wang B (2021) Circular RNA circ_HECTD1 regulates cell injury after cerebral infarction by miR-27a-3p/FSTL1 axis. Cell Cycle 20(9):914–926. https://doi.org/10.1080/15384101.2021.1909885

    Article  CAS  Google Scholar 

  45. Miyake A, Takahashi S, Nakamura Y, Inamura K, Matsumoto S, Mochizuki S, Katou M (2009) Disruption of the ether-a-go-go K+ channel gene BEC1/KCNH3 enhances cognitive function. J Neurosci 29(46):14637–14645. https://doi.org/10.1523/JNEUROSCI.0901-09.2009

    Article  CAS  Google Scholar 

  46. Takahashi S, Ohmiya M, Honda S, Ni K (2018) The KCNH3 inhibitor ASP2905 shows potential in the treatment of attention deficit/hyperactivity disorder. PLoS ONE 13(11):e0207750. https://doi.org/10.1371/journal.pone.0207750

    Article  CAS  Google Scholar 

  47. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6(1):74. https://doi.org/10.1038/s41392-020-00450-x

    Article  CAS  Google Scholar 

  48. Xiong X, Hou L, Park YP, Molinie B, Gregory RI, Kellis M, Consortium GT (2021) Genetic drivers of m(6)A methylation in human brain, lung, heart and muscle. Nat Genet 53(8):1156–1165. https://doi.org/10.1038/s41588-021-00890-3

    Article  CAS  Google Scholar 

  49. Wu G, McBride DW, Zhang JH (2018) Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-kappaB pathway after MCAO in rats. Neurobiol Dis 110:59–67. https://doi.org/10.1016/j.nbd.2017.11.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all of the physicians and nurses in the Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine.

Funding

This study was supported by the Natural Science Foundation of Guangxi (2018GXNSFAA281224), and the National Natural Science Foundation of China (Nos. 81874395 and 81860822, 82160849). The MEGASTROKE project received funding from sources specified at http://www.megastroke.org/acknowledgments.html. All MEGASTROKE authors were listed at https://www.megastroke.org/authors.html.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Experiments were performed by Lulu Zhu, Shengying Liu, Fangping Liao, and Jialei Yang; Data collection and analysis were performed by Lulu Zhu, Tian Liang, Yibing Yang, Xianli Huang, Lian Gu, and Li Su. The first draft of the manuscript was written by Lulu Zhu, Lian Gu, and Li Su. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lian Gu or Li Su.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consent was obtained from all subjects, and the research protocol was approved by Guangxi Medical University Medical Ethics Committee. All animal experiments were approved by the Animal Ethics Committee of Guangxi Medical University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Liu, S., Liao, F. et al. Comprehensive Analysis of Blood-Based m6A Methylation in Human Ischemic Stroke. Mol Neurobiol 60, 431–446 (2023). https://doi.org/10.1007/s12035-022-03064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03064-2

Keywords

Navigation