Skip to main content

Advertisement

Log in

Integrative Profiling of Amyotrophic Lateral Sclerosis Lymphoblasts Identifies Unique Metabolic and Mitochondrial Disease Fingerprints

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls. Three groups of lymphoblasts, from mutSOD1 or undSOD1 ALS patients and age-/sex-matched controls, were obtained from Coriell Biobank and divided into 3 age-/sex-matched cohorts. Mitochondria-associated metabolic pathways were analyzed using Seahorse MitoStress and ATP Rate assays, complemented with metabolic phenotype microarrays, metabolite levels, gene expression, and protein expression and activity. Pooled (all cohorts) and paired (intra-cohort) analyses were performed by using bioinformatic tools, and the features with higher information gain values were selected and used for principal component analysis and Naïve Bayes classification. Considering the group as a target, the features that contributed to better segregation of control, undSOD1, and mutSOD1 were found to be the protein levels of Tfam and glycolytic ATP production rate. Metabolic phenotypic profiles in lymphoblasts from ALS patients with mutSOD1 and undSOD1 revealed unique age-dependent different substrate oxidation profiles. For most parameters, different patterns of variation in experimental endpoints in lymphoblasts were found between cohorts, which may be due to the age or sex of the donor. In the present work, we investigated several metabolic and mitochondrial hallmarks in lymphoblasts from each donor, and although a high heterogeneity of results was found, we identified specific metabolic and mitochondrial fingerprints, especially protein levels of Tfam and glycolytic ATP production rate, that may have a diagnostic and therapeutic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data generated and analyzed in this work are available at: https://figshare.com/projects/Integrative_Profiling_of_Amyotrophic_Lateral_Sclerosis_Lymphoblasts_Identifies_Unique_Metabolic_and_Mitochondrial_Disease_Fingerprints/133428

Abbreviations

2-DG:

2-Deoxyglucose

ΔΨm:

Mitochondrial membrane potential

Ala-Gln:

Alanine-glutamine

ALS:

Amyotrophic lateral sclerosis

BCA:

Bicinchoninic acid method

Bcl-2:

B cell lymphoma 2

BHI:

Bioenergetic health index

CNS:

Central nervous system

COX4i1:

Cytochrome c oxidase subunit IV isoform 1

CYCS:

Cytochrome c, somatic

CYCs_mRNA:

Transcripts coding for cytochrome c, somatic

DTT:

Dithiothreitol

ECAR:

Extracellular acidification rate

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycol-bis (2-aminoethylether) N, N,′N, ′N-tetraacetic acid

ETC:

Mitochondrial electron transport chain

fALS:

Familial ALS

FN:

False negatives

FP:

False positives

G6PD_mRNA:

Transcripts coding for glucose-6-phosphate dehydrogenase

HRP:

Horseradish peroxidase

IMS:

Mitochondrial intermembrane space

LDH:

Lactate dehydrogenase

MAS:

Biolog mitochondrial assay solution

mutSOD1:

Mutant SOD1

NAM:

Nicotinamide

NDUFA9:

NADH:ubiquinone oxidoreductase subunit A9

OCR:

Oxygen consumption rate

OMM:

Outer mitochondrial membrane

PBMCs:

Peripheral blood mononuclear cells

PBS:

Phosphate-buffered saline

PCA:

Principal component analysis

PDHA1_mRNA:

Transcripts coding for pyruvate dehydrogenase A1

PMSF:

Phenylmethanesulfonylfluoride

sALS:

Sporadic ALS

SDS:

Sodium dodecyl sulfate

SOD1:

Cu/Zn superoxide dismutase 1

Ta:

Annealing temperature

TBS-T:

Tris-buffered saline Tween

Tfam_p:

Protein levels of Tfam

TMRM:

Tetramethylrhodamine methyl ester perchlorate

TN:

True negatives

TP:

True positives

undSOD1:

Unknown (or undetermined) SOD1 mutation

VDAC:

Voltage-dependent anion-selective channel

References

  1. Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32(5):771–776. https://doi.org/10.1097/WCO.0000000000000730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC (2021) The panoramic view of amyotrophic lateral sclerosis: a fatal intricate neurological disorder. Life Sci 288:120156. https://doi.org/10.1016/j.lfs.2021.120156

    Article  CAS  PubMed  Google Scholar 

  3. Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S et al (2021) A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain. https://doi.org/10.1093/brain/awab420

    Article  Google Scholar 

  4. Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3. https://doi.org/10.1186/1750-1172-4-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D et al (2015) A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 6:171. https://doi.org/10.4103/2152-7806.169561

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andrews JA, Jackson CE, Heiman-Patterson TD, Bettica P, Brooks BR, Pioro EP (2020) Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 21(7–8):509–518. https://doi.org/10.1080/21678421.2020.1771734

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka M, Sakata T, Palumbo J, Akimoto M (2016) A 24-week, phase III, double-blind, parallel-group study of edaravone (MCI-186) for treatment of amyotrophic lateral sclerosis (ALS)(P3. 189). AAN Enterprises

  8. Group WGOBOTEAS (2017) Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16(7):505–512. https://doi.org/10.1016/S1474-4422(17)30115-1

    Article  Google Scholar 

  9. Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933. https://doi.org/10.1016/j.neulet.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  10. Valdmanis PN, Rouleau GA (2008) Genetics of familial amyotrophic lateral sclerosis. Neurology 70(2):144–152. https://doi.org/10.1212/01.wnl.0000296811.19811.db

    Article  PubMed  Google Scholar 

  11. Bacman SR, Bradley WG, Moraes CT (2006) Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol 33(2):113–131. https://doi.org/10.1385/MN:33:2:113

    Article  CAS  PubMed  Google Scholar 

  12. Palomo GM, Manfredi G (2015) Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 1607:36–46. https://doi.org/10.1016/j.brainres.2014.09.065

    Article  CAS  PubMed  Google Scholar 

  13. Cozzolino M, Carri MT (2012) Mitochondrial dysfunction in ALS. Prog Neurobiol 97(2):54–66. https://doi.org/10.1016/j.pneurobio.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Appel SH, Beers DR, Zhao W (2021) Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Curr Opin Neurol 34(5):765–772. https://doi.org/10.1097/WCO.0000000000000983

    Article  PubMed  Google Scholar 

  15. Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, Kunz WS (1998) Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci 156(1):65–72. https://doi.org/10.1016/s0022-510x(98)00008-2

    Article  CAS  PubMed  Google Scholar 

  16. Vielhaber S, Winkler K, Kirches E, Kunz D, Buchner M, Feistner H, Elger CE, Ludolph AC et al (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J Neurol Sci 169(1–2):133–139. https://doi.org/10.1016/s0022-510x(99)00236-1

    Article  CAS  PubMed  Google Scholar 

  17. Nakano Y, Hirayama K, Terao K (1987) Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis. Arch Neurol 44(1):103–106. https://doi.org/10.1001/archneur.1987.00520130079022

    Article  CAS  PubMed  Google Scholar 

  18. Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, Zerbi F, Ceroni M (1996) Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology 47(4):1060–1064. https://doi.org/10.1212/wnl.47.4.1060

    Article  CAS  PubMed  Google Scholar 

  19. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A (2017) Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 23(1):5–22. https://doi.org/10.1111/cns.12655

    Article  PubMed  Google Scholar 

  20. Boylan K (2015) Familial amyotrophic lateral sclerosis. Neurol Clin 33(4):807–830. https://doi.org/10.1016/j.ncl.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261(5124):1047–1051. https://doi.org/10.1126/science.8351519

    Article  CAS  PubMed  Google Scholar 

  22. Kaur SJ, McKeown SR, Rashid S (2016) Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577(2):109–118. https://doi.org/10.1016/j.gene.2015.11.049

    Article  CAS  PubMed  Google Scholar 

  23. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  24. Synofzik M, Ronchi D, Keskin I, Basak AN, Wilhelm C, Gobbi C, Birve A, Biskup S et al (2012) Mutant superoxide dismutase-1 indistinguishable from wild-type causes ALS. Hum Mol Genet 21(16):3568–3574. https://doi.org/10.1093/hmg/dds188

    Article  CAS  PubMed  Google Scholar 

  25. Muller K, Oh KW, Nordin A, Panthi S, Kim SH, Nordin F, Freischmidt A, Ludolph AC et al (2022) De novo mutations in SOD1 are a cause of ALS. J Neurol Neurosurg Psychiatry 93(2):201–206. https://doi.org/10.1136/jnnp-2021-327520

    Article  PubMed  Google Scholar 

  26. Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277(33):29626–29633. https://doi.org/10.1074/jbc.M203065200

    Article  CAS  PubMed  Google Scholar 

  27. Browne SE, Bowling AC, Baik MJ, Gurney M, Brown RH Jr, Beal MF (1998) Metabolic dysfunction in familial, but not sporadic, amyotrophic lateral sclerosis. J Neurochem 71(1):281–287. https://doi.org/10.1046/j.1471-4159.1998.71010281.x

    Article  CAS  PubMed  Google Scholar 

  28. Jung C, Higgins CM, Xu Z (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 83(3):535–545. https://doi.org/10.1046/j.1471-4159.2002.01112.x

    Article  CAS  PubMed  Google Scholar 

  29. Kirkinezos IG, Bacman SR, Hernandez D, Oca-Cossio J, Arias LJ, Perez-Pinzon MA, Bradley WG, Moraes CT (2005) Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 25(1):164–172. https://doi.org/10.1523/JNEUROSCI.3829-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menzies FM, Cookson MR, Taylor RW, Turnbull DM, Chrzanowska-Lightowlers ZM, Dong L, Figlewicz DA, Shaw PJ (2002) Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125(Pt 7):1522–1533. https://doi.org/10.1093/brain/awf167

    Article  PubMed  Google Scholar 

  31. Calabria E, Scambi I, Bonafede R, Schiaffino L, Peroni D, Potrich V, Capelli C, Schena F et al (2019) ASCs-exosomes recover coupling efficiency and mitochondrial membrane potential in an in vitro model of ALS. Front Neurosci 13:1070. https://doi.org/10.3389/fnins.2019.01070

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61(6):2322–2325. https://doi.org/10.1111/j.1471-4159.1993.tb07478.x

    Article  CAS  PubMed  Google Scholar 

  33. Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102(4):293–305. https://doi.org/10.1007/s004010100399

    Article  CAS  PubMed  Google Scholar 

  34. Higgins CM, Jung C, Ding H, Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 22(6):RC215. https://doi.org/10.1523/JNEUROSCI.22-06-j0001.2002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Lillo C, Jonsson PA, Vande Velde C, Ward CM, Miller TM, Subramaniam JR, Rothstein JD et al (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43(1):5–17. https://doi.org/10.1016/j.neuron.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  36. Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T, Rehnmark A, Marklund SL (2006) Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J Neurosci 26(16):4147–4154. https://doi.org/10.1523/JNEUROSCI.5461-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, Gorrie GH, Khan MS et al (2006) Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc Natl Acad Sci U S A 103(18):7142–7147. https://doi.org/10.1073/pnas.0602046103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vande Velde C, Miller TM, Cashman NR, Cleveland DW (2008) Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proc Natl Acad Sci U S A 105(10):4022–4027. https://doi.org/10.1073/pnas.0712209105

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43(1):19–30. https://doi.org/10.1016/j.neuron.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  40. Israelson A, Arbel N, Da Cruz S, Ilieva H, Yamanaka K, Shoshan-Barmatz V, Cleveland DW (2010) Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS. Neuron 67(4):575–587. https://doi.org/10.1016/j.neuron.2010.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vijayvergiya C, Beal MF, Buck J, Manfredi G (2005) Mutant superoxide dismutase 1 forms aggregates in the brain mitochondrial matrix of amyotrophic lateral sclerosis mice. J Neurosci 25(10):2463–2470. https://doi.org/10.1523/JNEUROSCI.4385-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35(6–7):811–820. https://doi.org/10.1016/s0531-5565(00)00135-2

    Article  CAS  PubMed  Google Scholar 

  43. Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80(4):616–625. https://doi.org/10.1046/j.0022-3042.2001.00731.x

    Article  CAS  PubMed  Google Scholar 

  44. Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ (2019) Biomarkers in motor neuron disease: a state of the art review. Front Neurol 10:291. https://doi.org/10.3389/fneur.2019.00291

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE et al (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123(Pt 7):1339–1348. https://doi.org/10.1093/brain/123.7.1339

    Article  PubMed  Google Scholar 

  46. Ghiasi P, Hosseinkhani S, Noori A, Nafissi S, Khajeh K (2012) Mitochondrial complex I deficiency and ATP/ADP ratio in lymphocytes of amyotrophic lateral sclerosis patients. Neurol Res 34(3):297–303. https://doi.org/10.1179/1743132812Y.0000000012

    Article  CAS  PubMed  Google Scholar 

  47. Kirk K, Gennings C, Hupf JC, Tadesse S, D’Aurelio M, Kawamata H, Valsecchi F, Mitsumoto H et al (2014) Bioenergetic markers in skin fibroblasts of sporadic amyotrophic lateral sclerosis and progressive lateral sclerosis patients. Ann Neurol 76(4):620–624. https://doi.org/10.1002/ana.24244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Konrad C, Kawamata H, Bredvik KG, Arreguin AJ, Cajamarca SA, Hupf JC, Ravits JM, Miller TM et al (2017) Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients. Mol Neurodegener 12(1):76. https://doi.org/10.1186/s13024-017-0217-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Q, Vande Velde C, Israelson A, Xie J, Bailey AO, Dong MQ, Chun SJ, Roy T et al (2010) ALS-linked mutant superoxide dismutase 1 (SOD1) alters mitochondrial protein composition and decreases protein import. Proc Natl Acad Sci U S A 107(49):21146–21151. https://doi.org/10.1073/pnas.1014862107

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cunha-Oliveira T, Silva DF, Segura L, Baldeiras I, Marques R, Rosenstock T, Oliveira PJ, Silva FSG (2022) Redox profiles of amyotrophic lateral sclerosis lymphoblasts with or without known SOD1 mutations. Eur J Clin Invest e13798. https://doi.org/10.1111/eci.13798

  51. Lei XH, Bochner BR (2021) Optimization of cell permeabilization in electron flow based mitochondrial function assays. Free Radic Biol Med 177:48–57. https://doi.org/10.1016/j.freeradbiomed.2021.10.014

    Article  CAS  PubMed  Google Scholar 

  52. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115. https://doi.org/10.2144/000113610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  54. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O, de Medina FS (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401(2):318–320. https://doi.org/10.1016/j.ab.2010.02.036

    Article  CAS  PubMed  Google Scholar 

  55. Mire-Sluis AR, Page L, Thorpe R (1995) Quantitative cell line based bioassays for human cytokines. J Immunol Methods 187(2):191–199. https://doi.org/10.1016/0022-1759(95)00220-1

    Article  CAS  PubMed  Google Scholar 

  56. Bergmeyer HU, Bernt E (1974) UV-assay with pyruvate and NADH. In: Methods of enzymatic analysis. pp 574–579. https://doi.org/10.1016/b978-0-12-091302-2.50010-4

  57. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  58. Bergmeyer HU, Grassl M, H W (1983) Hexokinase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3 (II). Verlag Chemie, Weinheim, pp 222–223

    Google Scholar 

  59. Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, Možina M, Polajnar M et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14(1):2349–2353

    Google Scholar 

  60. Szelechowski M, Amoedo N, Obre E, Leger C, Allard L, Bonneu M, Claverol S, Lacombe D et al (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep 8(1):3953. https://doi.org/10.1038/s41598-018-22318-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walczak J, Debska-Vielhaber G, Vielhaber S, Szymanski J, Charzynska A, Duszynski J, Szczepanowska J (2019) Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics. FASEB J 33(3):4388–4403. https://doi.org/10.1096/fj.201801843R

    Article  CAS  PubMed  Google Scholar 

  62. Allen SP, Rajan S, Duffy L, Mortiboys H, Higginbottom A, Grierson AJ, Shaw PJ (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis. Neurobiol Aging 35(6):1499–1509. https://doi.org/10.1016/j.neurobiolaging.2013.11.025

    Article  CAS  PubMed  Google Scholar 

  63. Raman R, Allen SP, Goodall EF, Kramer S, Ponger LL, Heath PR, Milo M, Hollinger HC et al (2015) Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol Appl Neurobiol 41(2):201–226. https://doi.org/10.1111/nan.12147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerou M, Hall B, Woof R, Allsop J, Kolb SJ, Meyer K, Shaw PJ, Allen SP (2021) Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiol Aging 105:64–77. https://doi.org/10.1016/j.neurobiolaging.2021.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Echaniz-Laguna A, Zoll J, Ribera F, Tranchant C, Warter JM, Lonsdorfer J, Lampert E (2002) Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann Neurol 52(5):623–627. https://doi.org/10.1002/ana.10357

    Article  CAS  PubMed  Google Scholar 

  66. Araujo BG, Souza ESLF, de Barros Torresi JL, Siena A, Valerio BCO, Brito MD, Rosenstock TR (2020) Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research. Mol Neurobiol 57(12):5084–5102. https://doi.org/10.1007/s12035-020-02059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A, Fagegaltier D, Andrusivova Z et al (2019) Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364(6435):89–93. https://doi.org/10.1126/science.aav9776

    Article  CAS  PubMed  Google Scholar 

  68. Therrien M, Dion PA, Rouleau GA (2016) ALS: recent developments from genetics studies. Curr Neurol Neurosci Rep 16(6):59. https://doi.org/10.1007/s11910-016-0658-1

    Article  CAS  PubMed  Google Scholar 

  69. Goyal NA, Berry JD, Windebank A, Staff NP, Maragakis NJ, van den Berg LH, Genge A, Miller R et al (2020) Addressing heterogeneity in amyotrophic lateral sclerosis CLINICAL TRIALS. Muscle Nerve 62(2):156–166. https://doi.org/10.1002/mus.26801

    Article  PubMed  PubMed Central  Google Scholar 

  70. Katz JS, Barohn RJ, Dimachkie MM, Mitsumoto H (2015) The dilemma of the clinical trialist in amyotrophic lateral sclerosis: the hurdles to finding a cure. Neurol Clin 33(4):937–947. https://doi.org/10.1016/j.ncl.2015.07.014

    Article  PubMed  Google Scholar 

  71. Duong A, Evstratova A, Sivitilli A, Hernandez JJ, Gosio J, Wahedi A, Sondheimer N, Wrana JL et al (2021) Characterization of mitochondrial health from human peripheral blood mononuclear cells to cerebral organoids derived from induced pluripotent stem cells. Sci Rep 11(1):4523. https://doi.org/10.1038/s41598-021-84071-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Masson JJR, Ostrowski M, Duette G, Lee MKS, Murphy AJ, Crowe SM, Palmer CS (2020) The multiparametric analysis of mitochondrial dynamics in T cells from cryopreserved peripheral blood mononuclear cells (PBMCs). Methods Mol Biol 2184:215–224. https://doi.org/10.1007/978-1-0716-0802-9_15

    Article  CAS  PubMed  Google Scholar 

  73. Naia L, Ferreira IL, Cunha-Oliveira T, Duarte AI, Ribeiro M, Rosenstock TR, Laco MN, Ribeiro MJ et al (2015) Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington’s disease human lymphoblasts. Mol Neurobiol 51(1):331–348. https://doi.org/10.1007/s12035-014-8735-4

    Article  CAS  PubMed  Google Scholar 

  74. Panov A, Obertone T, Bennett-Desmelik J, Greenamyre JT (1999) Ca(2+)-dependent permeability transition and complex I activity in lymphoblast mitochondria from normal individuals and patients with Huntington’s or Alzheimer’s disease. Ann N Y Acad Sci 893:365–368. https://doi.org/10.1111/j.1749-6632.1999.tb07856.x

    Article  CAS  PubMed  Google Scholar 

  75. Annesley SJ, Lay ST, De Piazza SW, Sanislav O, Hammersley E, Allan CY, Francione LM, Bui MQ et al (2016) Immortalized Parkinson’s disease lymphocytes have enhanced mitochondrial respiratory activity. Dis Model Mech 9(11):1295–1305. https://doi.org/10.1242/dmm.025684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, Trotti D, Pasinelli P (2012) An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A 109(13):5074–5079. https://doi.org/10.1073/pnas.1115402109

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  78. Kang I, Chu CT, Kaufman BA (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592(5):793–811. https://doi.org/10.1002/1873-3468.12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keeney PM, Bennett JP Jr (2010) ALS spinal neurons show varied and reduced mtDNA gene copy numbers and increased mtDNA gene deletions. Mol Neurodegener 5:21. https://doi.org/10.1186/1750-1326-5-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morimoto N, Miyazaki K, Kurata T, Ikeda Y, Matsuura T, Kang D, Ide T, Abe K (2012) Effect of mitochondrial transcription factor a overexpression on motor neurons in amyotrophic lateral sclerosis model mice. J Neurosci Res 90(6):1200–1208. https://doi.org/10.1002/jnr.23000

    Article  CAS  PubMed  Google Scholar 

  81. Ferri A, Coccurello R (2017) What is “Hyper” in the ALS hypermetabolism? Mediators Inflamm 2017:7821672. https://doi.org/10.1155/2017/7821672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, Couratier P (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256(8):1236–1242. https://doi.org/10.1007/s00415-009-5100-z

    Article  CAS  PubMed  Google Scholar 

  83. Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, Heshmat S, Henders AK et al (2018) Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J Neurol Neurosurg Psychiatry 89(10):1016–1023. https://doi.org/10.1136/jnnp-2017-317887

    Article  PubMed  Google Scholar 

  84. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C (2018) SOD1 in amyotrophic lateral sclerosis: “Ambivalent” behavior connected to the disease. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051345

  85. Huai J, Zhang Z (2019) Structural properties and interaction partners of familial ALS-associated SOD1 mutants. Front Neurol 10:527. https://doi.org/10.3389/fneur.2019.00527

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ihara Y, Nobukuni K, Takata H, Hayabara T (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27(1):105–108. https://doi.org/10.1179/016164105X18430

    Article  CAS  PubMed  Google Scholar 

  87. Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci U S A 93(12):5709–5714. https://doi.org/10.1073/pnas.93.12.5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH Jr, Price DL et al (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci U S A 91(17):8292–8296. https://doi.org/10.1073/pnas.91.17.8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kokic AN, Stevic Z, Stojanovic S, Blagojevic DP, Jones DR, Pavlovic S, Niketic V, Apostolski S et al (2005) Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 10(5):265–270. https://doi.org/10.1179/135100005X70242

    Article  CAS  PubMed  Google Scholar 

  90. Pharaoh G, Sataranatarajan K, Street K, Hill S, Gregston J, Ahn B, Kinter C, Kinter M et al (2019) Metabolic and stress response changes precede disease onset in the spinal cord of mutant SOD1 ALS mice. Front Neurosci 13:487. https://doi.org/10.3389/fnins.2019.00487

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wei YH, Wu SB, Ma YS, Lee HC (2009) Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J 32(2):113–132

    PubMed  Google Scholar 

  92. Allen SP, Duffy LM, Shaw PJ, Grierson AJ (2015) Altered age-related changes in bioenergetic properties and mitochondrial morphology in fibroblasts from sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 36(10):2893–2903. https://doi.org/10.1016/j.neurobiolaging.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  93. Silaidos C, Pilatus U, Grewal R, Matura S, Lienerth B, Pantel J, Eckert GP (2018) Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biol Sex Differ 9(1):34. https://doi.org/10.1186/s13293-018-0193-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. D’Alessandro A, Fu X, Kanias T, Reisz JA, Culp-Hill R, Guo Y, Gladwin MT, Page G et al (2021) Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity. Haematologica 106(5):1290–1302. https://doi.org/10.3324/haematol.2020.246603

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Barry Bochner and Enrico Tatti from Biolog, Inc. for making the Omnilog device available for this study and for insightful comments on our data.

Funding

This work was financed by the European Regional Development Fund (ERDF), through the COMPETE 2020—Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, under projects, PTDC/MED-FAR/29391/2017, POCI-01–0145-FEDER-029391, PTDC/BTM-SAL/29297/2017, POCI-01–0145-FEDER-029297, PTDC/BTM-ORG/0055/2021, DL57/2016/CP1448/CT0016 [TCO], CEECIND/00322/2017 [EF], UIDP/04539/2020, UIDB/04539/2020 and UIDB/00081/2020. DM was supported by MSc Contract Mito4ALS—PTDC/MED-FAR/29391/2017.

Author information

Authors and Affiliations

Authors

Contributions

Filomena S.G Silva, Marcelo Carvalho, Elisabete Ferreiro and Débora Mena performed experiments. Filomena S. G. Silva, Teresa Cunha-Oliveira and Paulo J. Oliveira designed research and acquired funding. Filomena S. G. Silva, Teresa Cunha-Oliveira, Vilma Sardão and Francisco B. Pereira analyzed data. Filomena S. G. Silva, Vilma Sardão, Elisabete Ferreiro, Teresa Cunha-Oliveira and Paulo J. Oliveira wrote the paper. Fernanda Borges acquired funding and wrote the paper. Teresa Cunha-Oliveira prepared the figures. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Teresa Cunha-Oliveira or Filomena S. G. Silva.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Lymphoblasts from ALS patients present altered mitochondrial function

• Metabolic profiles of ALS lymphoblasts with SOD1 mutation differ from those without characterized mutation

• ALS lymphoblasts present hypermetabolic profiles

• Tfam protein expression and glycolytic ATP production rate are promising discriminative markers

• Some metabolic differences in lymphoblasts are sex and age dependent.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2022_2980_MOESM1_ESM.pdf

Fig. S1 Pooled and paired comparisons of lymphoblasts’ substrate preference, sorted by the average preference of the pooled control samples. The values represent the average dye MC maximal reduction rates obtained in the presence of the 31 different substrates included in the MitoPlate S1 metabolic microarray (Biolog). Substrate names are color-coded for the respective metabolic pathways leading to mitochondrial dye reduction; purple - TCA cycle, red - free fatty acid oxidation, blue - cytosolic pathways and black - other pathways. Data are available at: https://doi.org/10.6084/m9.figshare.19229229 (PDF 609 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha-Oliveira, T., Carvalho, M., Sardão, V. et al. Integrative Profiling of Amyotrophic Lateral Sclerosis Lymphoblasts Identifies Unique Metabolic and Mitochondrial Disease Fingerprints. Mol Neurobiol 59, 6373–6396 (2022). https://doi.org/10.1007/s12035-022-02980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02980-7

Keywords

Navigation