Skip to main content

Advertisement

Log in

The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily accessible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as well as their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding RNAs (ncRNAs, including miRNAs and lncRNAs) on neuroinflammation in MS has not been fully explained, several studies were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs which may be promising in MS as diagnostic and prognostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALS:

Amyotrophic lateral sclerosis

APC:

Antigen-presenting cells

BBB:

Blood-brain barrier

BDMCs:

Bone marrow-derived dendritic cells

BMDMs:

Bone marrow-derived macrophages

CCL2:

C-C Motif Chemokine Ligand 2

CCR6:

C-C Chemokine receptor 6

CDMS:

Clinically definite MS

CIS:

Clinically isolated syndrome

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CXCL1:

C-X-C Motif Chemokine Ligand 1

CXCL10:

C-X-C Motif Chemokine Ligand 10

CXCL13:

C-X-C Motif chemokine 13

dCLNs:

Deep cervical lymph nodes

DA:

Dark Agouti

DCs:

Dendritic cells

EAE:

Experimental autoimmune encephalomyelitis

EVs:

Extracellular vesicles

FACS:

Fluorescence-activated Cell Sorting

ECM:

Extracellular matrix

SELE:

E-selectin

GM-CSF:

Granulocyte Macrophage Colony- Stimulating Factor

IgG:

Immunoglobulin G

IL:

Interleukin

KO:

Knockout

LPS:

Lipopolysaccharide

LincRNA:

Long intergenic non-coding RNA

LncRNA:

Long non-coding RNA

miR, miRNA:

MicroRNA

MALAT1:

Metastasis associated lung adenocarcinoma transcript 1

MMP9:

Matrix metalloproteinase 9

MOG:

Myelin oligodendrocyte glycoprotein

MRC1:

Mannose Receptor C-Type 1

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MSCs:

Mesenchymal stem cells

n:

Number

ncRNAs:

non-coding RNAs

OPN:

Osteopontin

PBMC:

Peripheral blood mononuclear cells

p.i.:

Post-immunization

PPMS:

Primary progressive MS

PVG:

Piebald Virol Glaxo

RIS:

Radiologically isolated syndrome

ROS:

Reactive oxygen species

RRMS:

Relapsing-remitting MS

Smad7:

Suppressor of mothers against decapentaplegic 7

SOCS:

Suppressor of cytokine signalling proteins

Th17:

T helper 17

TNFα:

Tumour necrosis factor α

WT:

Wild type

References

  1. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173. https://doi.org/10.1016/S1474-4422(17)30470-2

    Article  PubMed  Google Scholar 

  2. Cordes KR, Srivastava D (2009) MicroRNA Regulation of Cardiovascular Development. Circ Res 104:724–732

    Article  CAS  Google Scholar 

  3. Pordzik J, Jakubik D, Jarosz-Popek J et al (2019) Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc Diabetol 18:113. https://doi.org/10.1186/s12933-019-0918-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jakubik D, Fitas A, Eyileten C et al (2021) MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 20:55. https://doi.org/10.1186/s12933-021-01245-2

  5. Zareba L, Fitas A, Wolska M et al (2020) MicroRNAs and Long Noncoding RNAs in Coronary Artery Disease: New and Potential Therapeutic Targets. Cardiol Clin 38:601–617. https://doi.org/10.1016/j.ccl.2020.07.005

    Article  PubMed  Google Scholar 

  6. Eyileten C, Wicik Z, De Rosa S et al (2018) MicroRNAs as Diagnostic and Prognostic Biomarkers in Ischemic Stroke-A Comprehensive Review and Bioinformatic Analysis. Cells 7. https://doi.org/10.3390/cells7120249

  7. Sabatino J, Wicik Z, De Rosa S et al (2019) MicroRNAs fingerprint of bicuspid aortic valve. J Mol Cell Cardiol 134:98–106. https://doi.org/10.1016/j.yjmcc.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  8. Pordzik J, Pisarz K, De Rosa S et al (2018) The potential role of platelet-related microRNAs in the development of cardiovascular events in high-risk populations, including diabetic patients: a review. Front Endocrinol 9:74. https://doi.org/10.3389/fendo.2018.00074

  9. Wolska M, Jarosz-Popek J, Junger E et al (2020) Long Non-coding RNAs as Promising Therapeutic Approach in Ischemic Stroke: a Comprehensive Review. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02206-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eyileten C, Sharif L, Wicik Z et al (2020) The Relation of the Brain-Derived Neurotrophic Factor with MicroRNAs in Neurodegenerative Diseases and Ischemic Stroke. Mol Neurobiol. https://doi.org/10.1007/s12035-020-02101-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jarosz-Popek J, Wolska M, Gasecka A et al (2020) The Importance of Non-Coding RNAs in Neurodegenerative Processes of Diabetes-Related Molecular Pathways. J Clin Med Res 10. https://doi.org/10.3390/jcm10010009

  12. Pordzik J, Eyileten-Postuła C, Jakubik D et al (2021) MiR-126 Is an Independent Predictor of Long-Term All-Cause Mortality in Patients with Type 2 Diabetes Mellitus. J Clin Med Res 10. https://doi.org/10.3390/jcm10112371

  13. Lukiw WJ, Handley P, Wong L, Crapper McLachlan DR (1992) BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem Res 17:591–597. https://doi.org/10.1007/BF00968788

    Article  CAS  PubMed  Google Scholar 

  14. Ghoveud E, Teimuri S, Vatandoost J et al (2020) Potential Biomarker and Therapeutic LncRNAs in Multiple Sclerosis Through Targeting Memory B Cells. NeuroMol Med 22:111–120

    Article  CAS  Google Scholar 

  15. Regev K, Healy BC, Paul A et al (2018) Identification of MS-specific serum miRNAs in an international multicenter study. Neurol Neuroimmunol Neuroinflammation 5:e491

    Article  Google Scholar 

  16. Muñoz-San Martín M, Reverter G, Robles-Cedeño R et al (2019) Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J Neuroinflammation 16:220. https://doi.org/10.1186/s12974-019-1590-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Regev K, Paul A, Healy B et al (2016) Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e267. https://doi.org/10.1212/NXI.0000000000000267

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bergman P, Piket E, Khademi M et al (2016) Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e219. https://doi.org/10.1212/NXI.0000000000000219

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-Ghezi ZZ, Miranda K, Nagarkatti M, Nagarkatti PS (2019) Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways. Front Immunol 10:1921. https://doi.org/10.3389/fimmu.2019.01921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Criste G, Trapp B, Dutta R (2014) Axonal loss in multiple sclerosis: causes and mechanisms. Handb Clin Neurol 122:101–113. https://doi.org/10.1016/B978-0-444-52001-2.00005-4

    Article  PubMed  Google Scholar 

  21. Ahn JJ, Abu-Rub M, Miller RH (2021) B Cells in Neuroinflammation: New Perspectives and Mechanistic Insights. Cells 10. https://doi.org/10.3390/cells10071605

  22. Asha MZI, Al-Asaad Y, Khalil SFH (2021) The comparative efficacy and safety of anti-CD20 monoclonal antibodies for relapsing-remitting multiple sclerosis: A network meta-analysis. IBRO Neurosci Rep 11:103–111. https://doi.org/10.1016/j.ibneur.2021.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333:1–4. https://doi.org/10.1016/j.jns.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Romme Christensen J, Komori M, von Essen MR et al (2019) CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage. Mult Scler 25:937–946. https://doi.org/10.1177/1352458518774880

    Article  CAS  PubMed  Google Scholar 

  25. Ghorbani S, Talebi F, Chan WF et al (2017) MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Front Immunol 8:758. https://doi.org/10.3389/fimmu.2017.00758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleiter I, Song J, Lukas D et al (2010) Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133:1067–1081

    Article  Google Scholar 

  27. Galloway DA, Blandford SN, Berry T et al (2019) miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia 67:857–869. https://doi.org/10.1002/glia.23576

    Article  PubMed  Google Scholar 

  28. Qin H, Niyongere SA, Lee SJ et al (2008) Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes. J Immunol 181:3167–3176. https://doi.org/10.4049/jimmunol.181.5.3167

    Article  CAS  PubMed  Google Scholar 

  29. Cianciulli A, Calvello R, Porro C et al (2017) Understanding the role of SOCS signaling in neurodegenerative diseases: Current and emerging concepts. Cytokine Growth Factor Rev 37:67–79. https://doi.org/10.1016/j.cytogfr.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, He F, Pang R et al (2014) Interleukin-17 (IL-17)-induced MicroRNA 873 (miR-873) Contributes to the Pathogenesis of Experimental Autoimmune Encephalomyelitis by Targeting A20 Ubiquitin-editing Enzyme. J Biol Chem 289:28971–28986. https://doi.org/10.1074/jbc.M114.577429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Zhou F, Yang Y et al (2019) MiR-409-3p and MiR-1896 co-operatively participate in IL-17-induced inflammatory cytokine production in astrocytes and pathogenesis of EAE mice via targeting SOCS3/STAT3 signaling. Glia 67:101–112. https://doi.org/10.1002/glia.23530

    Article  PubMed  Google Scholar 

  32. Talebi F, Ghorbani S, Chan WF et al (2017) MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 14:55. https://doi.org/10.1186/s12974-017-0832-7

  33. Bergman P, James T, Kular L et al (2013) Next-generation sequencing identifies microRNAs that associate with pathogenic autoimmune neuroinflammation in rats. J Immunol 190:4066–4075. https://doi.org/10.4049/jimmunol.1200728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giunti D, Marini C, Parodi B et al (2019) Exosome-shuttled miRNAs contribute to the modulation of the neuroinflammatory microglia phenotype by mesenchymal stem cells. Implication for amyotrophic lateral sclerosis. Research Square. https://doi.org/10.21203/rs.2.17858/v1

  35. Giunti D, Marini C, Parodi B et al (2021) Role of miRNAs shuttled by mesenchymal stem cell-derived small extracellular vesicles in modulating neuroinflammation. Sci Rep 11:1–17. https://doi.org/10.1038/s41598-021-81039-4

    Article  CAS  Google Scholar 

  36. Finardi A, Diceglie M, Carbone L et al (2020) Mir106b-25 and Mir17-92 Are Crucially Involved in the Development of Experimental Neuroinflammation. Front Neurol 11:912. https://doi.org/10.3389/fneur.2020.00912

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hosseiny M, Newsome SD, Yousem DM (2020) Radiologically Isolated Syndrome: A Review for Neuroradiologists. AJNR Am J Neuroradiol 41:1542–1549. https://doi.org/10.3174/ajnr.A6649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muñoz-San Martín M, Torras S, Robles-Cedeño R et al (2020) Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics 12:2065–2076. https://doi.org/10.2217/epi-2020-0172

    Article  CAS  PubMed  Google Scholar 

  39. Perdaens O, Dang HA, D’Auria L, van Pesch V (2020) CSF microRNAs discriminate MS activity and share similarity to other neuroinflammatory disorders. Neurol Neuroimmunol Neuroinflamm 7. https://doi.org/10.1212/NXI.0000000000000673

  40. Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14:406–419. https://doi.org/10.1016/S1474-4422(14)70305-9

    Article  CAS  PubMed  Google Scholar 

  41. Amoruso A, Blonda M, Gironi M et al (2020) Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Sci Rep 10:6125. https://doi.org/10.1038/s41598-020-63282-3

  42. Wu D, Cerutti C, Lopez-Ramirez MA et al (2015) Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation. J Cereb Blood Flow Metab 35:412–423. https://doi.org/10.1038/jcbfm.2014.207

    Article  CAS  PubMed  Google Scholar 

  43. Banerjee S, Cui H, Xie N et al (2013) miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem 288:35428–35436. https://doi.org/10.1074/jbc.M112.426866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Essandoh K, Li Y, Huo J, Fan G-C (2016) MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 46:122–131. https://doi.org/10.1097/SHK.0000000000000604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore CS, Rao VTS, Durafourt BA et al (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 74:709–720. https://doi.org/10.1002/ana.23967

    Article  CAS  PubMed  Google Scholar 

  46. Lu L, McCurdy S, Huang S et al (2016) Time Series miRNA-mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci Rep 6:37446. https://doi.org/10.1038/srep37446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao M, Xiao ZJ, Yang B et al (2020) Blood-Brain Barrier: More Contributor to Disruption of Central Nervous System Homeostasis Than Victim in Neurological Disorders. Front Neurosci 14:764. https://doi.org/10.3389/fnins.2020.00764

    Article  PubMed  PubMed Central  Google Scholar 

  48. de Vries HE, Kooij G, Frenkel D et al (2012) Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia 53(Suppl 6):45–52. https://doi.org/10.1111/j.1528-1167.2012.03702.x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kamphuis WW, Derada Troletti C, Reijerkerk A et al (2015) The blood-brain barrier in multiple sclerosis: microRNAs as key regulators. CNS Neurol Disord Drug Targets 14:157–167. https://doi.org/10.2174/1871527314666150116125246

    Article  CAS  PubMed  Google Scholar 

  50. Cerutti C, Edwards LJ, de Vries HE et al (2017) MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 7:45284. https://doi.org/10.1038/srep45284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lopez-Ramirez MA, Wu D, Pryce G et al (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28:2551–2565. https://doi.org/10.1096/fj.13-248880

    Article  CAS  PubMed  Google Scholar 

  52. Louveau A, Herz J, Alme MN et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21:1380–1391. https://doi.org/10.1038/s41593-018-0227-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoye ML, Archambault AS, Gordon TM et al (2018) MicroRNA signature of central nervous system-infiltrating dendritic cells in an animal model of multiple sclerosis. Immunology 155:112–122. https://doi.org/10.1111/imm.12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hemond CC, Healy BC, Tauhid S et al (2019) MRI phenotypes in MS: Longitudinal changes and miRNA signatures. Neurol Neuroimmunol Neuroinflamm 6:e530. https://doi.org/10.1212/NXI.0000000000000530

    Article  PubMed  PubMed Central  Google Scholar 

  55. Masoumi F, Ghorbani S, Talebi F et al (2019) Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol 328:50–59. https://doi.org/10.1016/j.jneuroim.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  56. Liu X, Zhou F, Wang W et al (2021) IL-9-triggered lncRNA Gm13568 regulates Notch1 in astrocytes through interaction with CBP/P300: contribute to the pathogenesis of experimental autoimmune encephalomyelitis. J Neuroinflammation 18:108. https://doi.org/10.1186/s12974-021-02156-5

  57. Zhang F, Liu G, Li D et al (2018) DDIT4 and Associated lncDDIT4 Modulate Th17 Differentiation through the DDIT4/TSC/mTOR Pathway. J Immunol 200:1618–1626. https://doi.org/10.4049/jimmunol.1601689

    Article  CAS  PubMed  Google Scholar 

  58. Gupta M, Martens K, Metz LM et al (2019) Long noncoding RNAs associated with phenotypic severity in multiple sclerosis. Mult Scler Relat Disord 36:101407. https://doi.org/10.1016/j.msard.2019.101407

    Article  PubMed  Google Scholar 

  59. Zhang F, Liu G, Wei C et al (2017) Linc-MAF-4 regulates Th1/Th2 differentiation and is associated with the pathogenesis of multiple sclerosis by targeting MAF. FASEB J 31:519–525. https://doi.org/10.1096/fj.201600838R

    Article  CAS  PubMed  Google Scholar 

  60. Shannon P (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  61. Piñero J, Saüch J, Sanz F, Furlong LI (2021) The DisGeNET cytoscape app: Exploring and visualizing disease genomics data. Comput Struct Biotechnol J 19:2960–2967. https://doi.org/10.1016/j.csbj.2021.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was written by the members of the International and Intercontinental Cardiovascular and Cardiometabolic Research Team (I-COMET; www.icomet.science).

Funding

The work was supported financially as part of the research grant ‘OPUS’ from National Science Centre, Poland (grant number 2018/31/B/NZ7/01137).

Author information

Authors and Affiliations

Authors

Contributions

AN, CE, AS, DMG contributed to writing—original draft preparation; CE, AN, ZW, MP, DMG, AC, JP, PS, JJP helped in writing—revision and editing; CE, ZW contributed to visualization; CE, JP, MP, DMG helped in supervision.

Corresponding author

Correspondence to Ceren Eyileten.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

Authors declare no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak, A., Wicik, Z., Wolska, M. et al. The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis. Mol Neurobiol 59, 4651–4668 (2022). https://doi.org/10.1007/s12035-022-02854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02854-y

Keywords

Navigation