Skip to main content

Advertisement

Log in

Altered Calcium Permeability of AMPA Receptor Drives NMDA Receptor Inhibition in the Hippocampus of Murine Obesity Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Evidence has accumulated that higher consumption of high-fat diets (HFDs) during the juvenile/adolescent period induces altered hippocampal function and morphology; however, the mechanism behind this phenomenon remains elusive. Using high-resolution structural imaging combined with molecular and functional interrogation, a murine model of obesity treated with HFDs for 12 weeks after weaning mice was shown to change in the glutamate-mediated intracellular calcium signaling and activity, including further selective reduction of gray matter volume in the hippocampus associated with memory recall disturbance. Dysregulation of intracellular calcium concentrations was restored by a non-competitive α-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) antagonist, followed by normalization of hippocampal volume and memory recall ability, indicating that AMPARs may serve as an attractive therapeutic target for obesity-associated cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Noble EE, Kanoski SE (2016) Early life exposure to obesogenic diets and learning and memory dysfunction. Curr Opin Behav Sci 9:7–14. https://doi.org/10.1016/j.cobeha.2015.11.014

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hargrave SL, Jones S, Davidson TL (2016) The outward spiral: a vicious cycle model of obesity and cognitive dysfunction. Curr Opin Behav Sci 9:40–46. https://doi.org/10.1016/j.cobeha.2015.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hwang L-L, Wang C-H, Li T-L, Chang S-D, Lin L-C, Chen C-P, Chen C-T, Liang K-C et al (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18:463–469. https://doi.org/10.1038/oby.2009.273

    Article  CAS  Google Scholar 

  4. Valladolid-Acebes I, Stucchi P, Cano V, Fernández-Alfonso MS, Merino B, Gil-Ortega M, Fole A, Morales L et al (2011) High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol Learn Mem 95:80–85. https://doi.org/10.1016/j.nlm.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  5. Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8:189–202. https://doi.org/10.1038/nrneurol.2012.27

    Article  CAS  PubMed  Google Scholar 

  6. Olmo ND, Ruiz-Gayo M (2018) Influence of high-fat diets consumed during the juvenile period on hippocampal morphology and function. Front Cell Neurosci 12:439. https://doi.org/10.3389/fncel.2018.00439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cull-Candy S, Kelly L, Farrant M (2006) Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr Opin Neurobiol 16:288–297. https://doi.org/10.1016/j.conb.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  8. Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134. https://doi.org/10.1016/j.tins.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  9. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H et al (2002) Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8:971–978. https://doi.org/10.1038/nm746

    Article  CAS  PubMed  Google Scholar 

  10. Akamatsu M, Yamashita T, Hirose N, Teramoto S, Kwak S (2016) The AMPA receptor antagonist perampanel robustly rescues amyotrophic lateral sclerosis (ALS) pathology in sporadic ALS model mice. Sci Rep 6:28649. https://doi.org/10.1038/srep28649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng L-J, Shaham Y, Marinelli M, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454:118–121. https://doi.org/10.1038/nature06995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khangura RK, Bali A, Jaggi AS, Singh N (2017) Histone acetylation and histone deacetylation in neuropathic pain: an unresolved puzzle? Eur J Pharmacol 795:36–42. https://doi.org/10.1016/j.ejphar.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  13. French JA, Krauss GL, Wechsler RT, Wang X-F, DiVentura B, Brandt C, Trinka E, O’Brien TJ et al (2015) Perampanel for tonic-clonic seizures in idiopathic generalized epilepsy A randomized trial. Neurology 85:950–957. https://doi.org/10.1212/WNL.0000000000001930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozawa S (2009) Ca2+-permeable AMPA receptors in central neurons. J Physiol 587:1861–1862. https://doi.org/10.1113/jphysiol.2009.169532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rozov A, Burnashev N (2016) Fast interaction between AMPA and NMDA receptors by intracellular calcium. Cell Calcium 60:407–414. https://doi.org/10.1016/j.ceca.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Hibi S, Ueno K, Nagato S, Kawano K, Ito K, Norimine Y, Takenaka O, Hanada T et al (2012) Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. J Med Chem 55:10584–10600. https://doi.org/10.1021/jm301268u

    Article  CAS  PubMed  Google Scholar 

  17. Shiroma A, Nishimura M, Nagamine H, Miyagi T, Hokama Y, Watanabe T, Murayama S, Tsutsui M et al (2016) Cerebellar contribution to pattern separation of human hippocampal memory circuits. Cerebellum 15:645–662. https://doi.org/10.1007/s12311-015-0726-0

    Article  PubMed  Google Scholar 

  18. Usugi R, Nishimura M, Ishiuchi S (2020) Analysis of human hippocampal volumetry in relation to pattern separation ability in healthy young subjects. Brain Behav 10:e01878. https://doi.org/10.1002/brb3.1878

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anai M, Funaki M, Ogihara T, Kanda A, Onishi Y, Sakoda H, Inukai K, Nawano M et al (1999) Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes 48:158–169. https://doi.org/10.2337/diabetes.48.1.158

    Article  CAS  PubMed  Google Scholar 

  20. Yonekawa T, Malicdan MCV, Cho A, Hayashi YK, Nonaka I, Mine T, Yamamoto T, Nishino I et al (2014) Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137:2670–2679. https://doi.org/10.1093/brain/awu210

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, Inokuchi K (2008) Activin in the brain modulates anxiety-related behavior and adult neurogenesis. PLoS ONE 3:1869. https://doi.org/10.1371/journal.pone.0001869

    Article  CAS  Google Scholar 

  22. Huang T-N, Hsueh YP (2014) Novel object recognition for studying memory in mice. Bioprotocol 4(19). https://doi.org/10.21769/BioProtoc.1249

  23. Toda T, Noda Y, Ito G, Maeda M, Shimizu T (2011) Presenilin-2 mutation causes early amyloid accumulation and memory impairment in a transgenic mouse model of Alzheimer’s disease. J. Biomed. Biotechnol:617974. https://doi.org/10.1155/2011/617974

  24. Nakashiba T, Cushman JD, Pelkey KA, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201. https://doi.org/10.1016/j.cell.2012.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508:88–92. https://doi.org/10.1038/nature13028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13:322–328. https://doi.org/10.1101/lm.152906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57BL/6J mice. Neuroimage 42:60–69. https://doi.org/10.1016/j.neuroimage.2008.03.037

    Article  CAS  PubMed  Google Scholar 

  28. Ullmann JFP, Watson C, Janke AL, Kurniawan ND, Reutens DC (2013) A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex. Neuroimage 78:196–203. https://doi.org/10.1016/j.neuroimage.2013.04.008

    Article  PubMed  Google Scholar 

  29. Richards TL, Grabowski TJ, Boord P, Yagle K, Askren M, Mestre Z, Robinson P, Welker O et al (2015) Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia. Neuroimage Clin 8:408–421. https://doi.org/10.1016/j.nicl.2015.03.018.eCollection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duvernoy HM (2005) The human hippocampus: functional anatomy, vascularization and serial sections with MRI, Springer Verlag

  31. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2:125–141. https://doi.org/10.1089/brain.2012.0073

    Article  PubMed  Google Scholar 

  32. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  33. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8:e68910. https://doi.org/10.1371/journal.pone.0068910 (Print 2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yao I, Takagi H, Ageta H, Kahyo T, Sato S, Hatanaka K, Fukuda Y, Chiba T et al  (2007) SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130:943–957. https://doi.org/10.1016/j.cell.2007.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koike M, Iino M, Ozawa S (1997) Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci Res 29:27–36. https://doi.org/10.1016/s0168-0102(97)00067-9

    Article  CAS  PubMed  Google Scholar 

  36. Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C et al (2015) Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 10:1860–1896. https://doi.org/10.1038/nprot.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguye QT, Wallace M, Nerbonne JM, Lichtman JW et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51. https://doi.org/10.1016/s0896-6273(00)00084-2

    Article  CAS  PubMed  Google Scholar 

  38. Porrero C, Rubio-Garrido P, Avendaño C, Clascá F (2010) Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice. Brain Res 1345:59–72. https://doi.org/10.1016/j.brainres.2010.05.061

    Article  CAS  PubMed  Google Scholar 

  39. Legendre P, Rosenmund C, Westbrook GL (1993) Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J Neurosci 13:674–684. https://doi.org/10.1523/JNEUROSCI.13-02-00674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iacobucci GJ, Popescu GK (2020) Ca2+-dependent inactivation of GluN2A and GluN2B NMDA receptors occurs by a common kinetic mechanism. Biophys J 118:798–812. https://doi.org/10.1016/j.bpj.2019.07.057

    Article  CAS  PubMed  Google Scholar 

  41. Bickler PE, Fahlman CS (2004) Moderate increases in intracellular calcium activate neuroprotective signals in hippocampal neurons. Neuroscience 127:673–683. https://doi.org/10.1016/j.neuroscience.2004.05.035

    Article  CAS  PubMed  Google Scholar 

  42. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. https://doi.org/10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  43. Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ et al (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 92:161–193. https://doi.org/10.1016/j.pnpbp.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  44. Iwamura E, Yamada K, Ichitani Y (2016) Involvement of hippocampal NMDA receptors in retrieval of spontaneous object recognition memory in rats. Behav Brain Res 307:92–99. https://doi.org/10.1016/j.bbr.2016.03.048

    Article  CAS  PubMed  Google Scholar 

  45. Yang J, Ma Q, Dincheva I, Giza J, Jing D, Marinic T, Milner TA, Rajadhyaksha A et al (2021) SorCS2 is required for social memory and trafficking of the NMDA receptor. Mol Psychiatry 6:927–940. https://doi.org/10.1038/s41380-020-0650-7

    Article  CAS  Google Scholar 

  46. Vorhees CV, Williams M (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA et al (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–218. https://doi.org/10.1126/science.1071795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS, Davidson TJ, Mirzabekov JJ, Zalocusky KA et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337. https://doi.org/10.1038/nature12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Araya R, Vogels TP, Yuste R (2014) Activity-dependent dendritic spine neck changes are correlated with synaptic strength. Proc Natl Acad Sci USA 111(28):E2895–E2904. https://doi.org/10.1073/pnas.1321869111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Noguchi J, Matsuzaki M, Ellis-Davies GCR, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622. https://doi.org/10.1016/j.neuron.2005.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GC, Kitamura K, Kano M, Kasai H (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol 589:2447–2457. https://doi.org/10.1113/jphysiol.2011.207100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nature Neurosci 4:1086–1092. https://doi.org/10.1038/nn736

    Article  CAS  PubMed  Google Scholar 

  53. Gsell W, Burke M, Wiedermann D, Bonvento G, Silva AC, Dauphin F, Bührle C, Hoehn M et al (2006) Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci 26:8409–8816. https://doi.org/10.1523/JNEUROSCI.4615-05.2006

    Article  PubMed  PubMed Central  Google Scholar 

  54. Guzowski JF, Knierim JJ, Moser EI (2004) Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron 44:581–584. https://doi.org/10.1016/j.neuron.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  55. Dauvermann MR, Lee G, Dawson N (2017) Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 174:3136–3160. https://doi.org/10.1111/bph.13919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hassing LB, Dahl AK, Pedersen NL, Johansson B (2010) Overweight in midlife is related to lower cognitive function 30 years later: a prospective study with longitudinal assessments. Dement Geriatr Cogn Disord 29:543–552. https://doi.org/10.1159/000314874

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jagust W, Harvey D, Mungas D, Haan M (2005) Central obesity and the aging brain. Arch Neurol 62:1545–1548. https://doi.org/10.1001/archneur.62.10.1545

    Article  PubMed  Google Scholar 

  58. Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A (2012) Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arterioscler Thromb Vasc Biol 32:2060–2067. https://doi.org/10.1161/ATVBAHA.112.252759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643. https://doi.org/10.1038/35007508

    Article  CAS  PubMed  Google Scholar 

  60. Rashid B, Dev SI, Nicolette M, Schwarz F, Ferland T, Fortenbaugh FC, Milberg WP, McGlinchey RE et al (2019) Aberrant patterns of default-mode network functional connectivity associated with metabolic syndrome: a resting-state study. Brain Behav 9:e01333. https://doi.org/10.1002/brb3.1333

    Article  PubMed  PubMed Central  Google Scholar 

  61. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, Pfäffle R, Kiess W et al (2018) Acceleration of BMI in early childhood and risk of sustained obesity. N Engl J Med 379:1303–1312. https://doi.org/10.1056/NEJMoa1803527

    Article  PubMed  Google Scholar 

  62. Ou-Yang DC, York PJ, Kleck CJ, Patel VV (2017) Diagnosis and management of sacroiliac joint dysfunction. J Bone Joint Surg Am 99:2027–2036. https://doi.org/10.2106/JBJS.17.00245

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Professor Kenzo Takahashi (University of the Ryukyus) for his critical review of our manuscript. The authors wish to acknowledge Professor Yamamoto, Chief Executive Officer of OIST’s MRI system. Rodent MRI was performed at the University of the Ryukyus under the OIST Sign Cooperation Agreement. The authors wish to acknowledge Mr. Yasuhiko Sato and Mr. Masato Takiguchi (Carl Zeiss) for their special technical support and Mr. Yoshiki Ohshiro for his secretarial assistance.

Funding

This work was supported by Grants-in-Aid for Scientific Research (B) (23390352) (to S.I.); Grants-in-Aid for Scientific Research (A) (17H01403) (to S.I.); Challenging Exploratory Research (24650168) (to S.I.) by the Ministry of Education, Culture, Sports, Science and Technology in Japan; the Industrial Disease Clinical Research Grants by the Ministry of Health, Labor, and Welfare (14050101–01) (to S.I.); Special Account Budget for Education and Research (2011–2013, 2011–2015, 2014–2018, 2015–2019) (to S.I.); Grants for the Princess Takamatsu Cancer Fund (to S.I.); and the Grants for Takeda Science Foundation (to S.I.).

Author information

Authors and Affiliations

Authors

Contributions

YM contributed qRT-PCR, Q/R, rodent behavioral analysis, and planning of animal experimental design. KF contributed Immunohistochemical analysis. KH contributed Rodent MRI imaging. DU contributed NGS analysis. CK contributed Western blot analysis. MN contributed Human and rodent MRI imaging and network analysis. HT contributed Ca2+ imaging and editing of the manuscript. SI contributed Z1 imaging, Golgi staining, project administration, funding acquisition, conceptualization and writing, and review and editing of the manuscript.

Corresponding author

Correspondence to Shogo Ishiuchi.

Ethics declarations

Ethics Approval

All animal experiments were performed in accordance with the guidelines of the Animal Experiment Ethics Committee of the University of the Ryukyus (approval number: A2019239). All experiments were approved by the ethical committee of the University of the Ryukyus for medical and health research involving human subjects and were performed in accordance with guidelines of human experiment regulations at University of the Ryukyus (approval number: 111).

Consent to Participate

Not applicable.

Consent for Publication

All authors have seen and approved the manuscript and contributed significantly to this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.09 MB)

Supplementary file2 (MP4 50275 KB)

Supplementary file3 (MP4 50210 KB)

Supplementary file4 (MP4 50225 KB)

Supplementary file5 (MP4 50234 KB)

Supplementary file6 (MP4 50201 KB)

Supplementary file7 (MP4 50248 KB)

Supplementary file8 (MP4 5389 KB)

Supplementary file9 (MP4 43682 KB)

Supplementary file10 (MP4 44823 KB)

Supplementary file11 (MP4 65740 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagi, Y., Fujiwara, K., Hikishima, K. et al. Altered Calcium Permeability of AMPA Receptor Drives NMDA Receptor Inhibition in the Hippocampus of Murine Obesity Models. Mol Neurobiol 59, 4902–4925 (2022). https://doi.org/10.1007/s12035-022-02834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02834-2

Keywords

Navigation