Skip to main content
Log in

Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4a

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AIMs:

Abnormal involuntary movement

Akt:

Protein kinase b

ARID1:

AT-rich interaction domain 1B

ASD:

ASD

BBB:

Blood brain barrier

BND:

Brain-derived neurotrophic factor

BTBR:

BTBR T + Itpr3tf/J strain

BTIC:

Brain tumour initiating cells

CASP:

Caspase

CAT:

Catalase

CCL:

Chemokine receptor ligand

CXCL:

Chemokine receptor

DAT:

Dopamine transporter

DC:

Dendritic cells

DHA:

Docosahexaenoic acid

EAE:

Experimental allergic encephalomyelitis

EMF:

Electromagnetic fields

ETC:

Electron transport chain

Fmr1-KO:

Fragile X mental retardation 1 knockout

FXS:

Fragile-x-syndrome

GPx:

Glutathione peroxidase

GFAP:

Glial fibrillary acidic protein

H2O2:

Hydrogen peroxide

ID:

Intellectual disabilities

IDD:

Intellectual developmental disorders

IL:

Interleukins

INFg:

Interferon gamma

iNOS:

Nitric oxide synthase

JAK:

Janus kinase

LEPR:

Leptin precursor receptor

LPS:

Lipopolysaccharide

LTD:

Long-term depression

METH:

Methamphetamine

MitoQ:

Mitochondria targeted antioxidant

mtROS:

Mitochondrial reactive oxygen species

NADPH:

Nicotinamide adenine dinucleotide phosphate

NASH:

Non-alcoholic steatohepatitis

NLN:

Neuroligin

NMDAR:

N-methyl-D-aspartate receptor

Nox oxidase:

NADPH oxidase

NSC:

Neural stem cells

OGD:

Oxygen glucose deprived

OH:

Hydroxyl

PD:

Parkinson disease

PLC:

Phospholipase C

PPARγ:

Peroxisome proliferation-activated receptor gamma

ROS:

Reactive oxygen species

RXR:

Retinoid-x-receptors

SAE:

Sepsis-associated encephalopathy

SERT:

Serotonin transporter

SOD:

Superoxide dismutase

SOCS:

Suppressor of cytokine signalling

STAT:

Signal transducer and activator of transcription

SVZ:

Subventricular zone

TBI:

Traumatic brain injury

TNF-α:

Tumour necrotic factor-alpha

VPA:

Valproic acid

X-ALD:

X-linked adrenoleukodystrophy

ROS-R:

Reactive oxygen species-receptor

References

  1. Bousoik Emira, Aliabadi Montazeri, Hamidreza (2018) “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 8:287. https://doi.org/10.3389/fonc.2018.00287

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alzahrani MZ, Alshammari MA, Attia SM (2018) Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T+ Itpr3tf/J autistic mice. Eur J Pharmacol 829:70–78

    Article  CAS  PubMed  Google Scholar 

  3. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493. https://doi.org/10.1523/jneurosci.4440-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahmad, Sheikh F Ansari, Mushtaq A Nadeem, Ahmed; Bakheet, Saleh A.; AL-Ayadhi, Laila Y.; Attia, Sabry M. 2018. Elevated IL-16 expression is associated with development of immune dysfunction in children with autism. Psychopharmacology https://doi.org/10.1007/s00213-018-5120-4

  5. Ahmad Sheikh F, Nadeem Ahmed, Ansari Mushtaq A, Bakheet Saleh A, Laila Yousef Al-Ayadhi, Attia Sabr M (2017) Upregulation of IL-9 and JAK-STAT signaling pathway in children with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 79:472–480. https://doi.org/10.1016/j.pnpbp.2017.08.002

    Article  CAS  Google Scholar 

  6. Nadeem Ahmed, Ahmad Sheikh F, Attia Sabry M, AL-Ayadhi Laila Y, Al-Harbi Naif O, Bakheet Saleh A (2020) Dysregulation in IL-6 receptors is associated with upregulated IL-17A related signaling in CD4+ T cells of children with autism. Prog Neuro-Psychopharmacol Biol Psychiatry 97:109783. https://doi.org/10.1016/j.pnpbp.2019.109783

    Article  CAS  Google Scholar 

  7. Nadeem Ahmed, Ahmad Sheikh F, Attia Sabry M, AL-Ayadhi Laila Y, Bakheet Saleh A, Al-Harbi Naif O (2019) Oxidative and inflammatory mediators are upregulated in neutrophils of autistic children Role of IL-17A receptor signaling. Prog Neuro-Psychopharmacol Biol Psychiatry 90:204–211. https://doi.org/10.1016/j.pnpbp.2018.12.002

    Article  CAS  Google Scholar 

  8. Napolitano M, Costa L, Palermo R, Giovenco A, Vacca A, Gulino A (2011) (2011) Protective effect of pioglitazone, a PPARγ ligand, in a 3 nitropropionic acid model of Huntington’s disease. Brain Res Bull 85(3–4):231–237. https://doi.org/10.1016/j.brainresbull.\

    Article  CAS  PubMed  Google Scholar 

  9. Morgenweck J, Griggs RB, Donahue RR, Zadina JE, Taylor BK (2013) PPARγ activation blocks development and reduces established neuropathic pain in rats. Neuropharmacology 70:236–46. https://doi.org/10.1016/j.neuropharm.2013.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domi E, Caputi FF, Romualdi P, Domi A, Scuppa G, Candeletti S, Ubaldi M (2019) Activation of PPARγ attenuates the expression of physical and affective nicotine withdrawal symptoms through mechanisms involving amygdala and hippocampus neurotransmission. J Neurosci 39(49):9864–9875

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meng QQ, Feng ZC, Zhang XL, Hu LQ, Wang M, Zhang HF, Li SM (2019) PPAR-γ activation exerts an anti-inflammatory effect by suppressing the NLRP3 inflammasome in spinal cord-derived neurons. Mediators Inflamm 2019:6386729. https://doi.org/10.1155/2019/6386729.PMID:31015796;PMCID:PMC6444263

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alsanea S, Al-Hosaini KA, Attia SM (2020) Inhibition of tyrosine kinase signaling by tyrphostin AG126 downregulates the IL-21/IL-21R and JAK/STAT pathway in the BTBR mouse model of autism. Neurotoxicology 77:1–11

    Article  CAS  PubMed  Google Scholar 

  13. Haim LB, Ceyzériat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M, Escartin C (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35(6):2817–2829

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qin H, Buckley JA, Li X, Liu Y, Fox TH 3rd, Meares GP, Yu H, Yan Z, Harms AS, Li Y, Standaert DG, Benveniste EN (2016) Inhibition of the JAK/STAT pathway protects against α-synuclein-induced neuroinflammation and dopaminergic neurodegeneration. J Neurosci 36(18):5144–5159. https://doi.org/10.1523/JNEUROSCI.4658-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canto E, Isobe N, Didonna A, Hauser SL, Oksenberg JR (2018) Aberrant STAT phosphorylation signaling in peripheral blood mononuclear cells from multiple sclerosis patients. J Neuroinflammation 15(1):1–11

    Article  CAS  Google Scholar 

  16. Kumar N, Sharma N, Khera R, Gupta R, Mehan S (2021) Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab Brain Dis 36(5):911–925. https://doi.org/10.1007/s11011-021-00691-x

    Article  CAS  PubMed  Google Scholar 

  17. Mukthavaram R, Ouyang X, Saklecha R, Jiang P, Nomura N, Pingle SC, Kesari S (2015) Effect of the JAK2/STAT3 inhibitor SAR317461 on human glioblastoma tumorspheres. J Transl Med 13:1. https://doi.org/10.1186/s12967-015-0627-5

    Article  CAS  Google Scholar 

  18. Hodges GE, Ménard C, Russo SJ (2016) Integrating interleukin-6 into depression diagnosis and treatment. Neurobiol Stress 4:15–22. https://doi.org/10.1016/j.ynstr.2016.03.003

    Article  Google Scholar 

  19. McGregor G, Irving AJ, Harvey J (2017) Canonical JAK-STAT signaling is pivotal for long-term depression at adult hippocampal temporoammonic-CA1 synapses. FASEB J 31(8):3449–3466. https://doi.org/10.1096/fj.201601293rr

    Article  CAS  PubMed  Google Scholar 

  20. Xu Z Zhang Z Ma X Ping F Zheng X 2015 [Effect of PM2.5 on oxidative stress-JAK/STAT signaling pathway of human bronchial epithelial cells]. Wei Sheng Yan Jiu.;44 3 451–5. Chinese. PMID: 26137628.

  21. Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A (2021) Neuroprotective effect of α-mangostin in the ameliorating propionic acid-induced experimental model of autism in wistar rats. Brain Sci 11(3):288. https://doi.org/10.3390/brainsci11030288.PMID:33669120;PMCID:PMC7996534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rahi S. & Mehan S (2020). Understanding abnormal SMO-SHH signaling in autism spectrum disorder: potential drug target and therapeutic goals. Cell molecular neurobiolAdvance online publicationhttps://doi.org/10.1007/s10571-020-01010-1

  23. Peters-Scheffer N, Didden R, Korzilius H, Sturmey P (2011) A meta-analytic study on the effectiveness of comprehensive ABA-based early intervention programs for children with Autism Spectrum Disorders. Res Autism Spectr Disord 5(1):60–69. https://doi.org/10.1016/j.rasd.2010.03.011

    Article  Google Scholar 

  24. Jones EK, Hanley M, Riby DM (2020) Distraction, distress and diversity: exploring the impact of sensory processing differences on learning and school life for pupils with autism spectrum disorders. Res Autism Spectr Disord 72:101515

    Article  Google Scholar 

  25. Chakrabarti S, Fombonne E (2001) Pervasive developmental disorders in preschool children. JAMA 285(24):3093–3099

    Article  CAS  PubMed  Google Scholar 

  26. Rahi S, Mehan S (2020). Understanding abnormal SMO-SHH signaling in autism spectrum disorder: potential drug target and therapeutic goals. Cell mol neurobiol Advance online publ 10.1007/s10571-020-01010-1

  27. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J (2018) Autism spectrum disorder. Lancet 392(10146):508–520

    Article  PubMed  PubMed Central  Google Scholar 

  28. Attia, SM.; Al-Hamamah, MA.; Ahmad, SF.; Nadeem, A.; Attia, MSM.; Ansari, MA.; Bakheet, SA.; Al-Ayadhi, LY. 2019. Evaluation of DNA repair efficiency in autistic children by molecular cytogenetic analysis and transcriptome profiling. DNA Repair, 102750 https://doi.org/10.1016/j.dnarep.2019.102750

  29. Mehan S, Rahi S, Tiwari A, Kapoor T, Rajdev K, Sharma R, Khera H, Kosey S, Kukkar U, Dudi R (2020) Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats. Neural Regen Res 15(6):1140–1149. https://doi.org/10.4103/1673-5374.270316

    Article  PubMed  Google Scholar 

  30. Gadow KD, DeVincent CJ, Pomeroy J, Azizian A (2004) Psychiatric symptoms in preschool children with PDD and clinic and comparison samples. J Autism Dev Disord 34(4):379–393

    Article  PubMed  Google Scholar 

  31. Lecavalier L (2006) Behavioural and emotional problems in young people with pervasive developmental disorders: relative prevalence, effects of subject characteristics, and empirical classification. J Autism Dev Disord 36(8):1101–1114. https://doi.org/10.1007/s10803-006-0147-5

    Article  PubMed  Google Scholar 

  32. Nadeem, Ahmed; Ahmad, Sheikh F.; Al-Harbi, Naif O.; AL-Ayadhi, Laila Y.; Attia, Sabry M.; Alasmari, Abdullah F; As Sobeai, Homood M; Bakheet, Saleh A. 2020. Ubiquitous plasticizer, Di-(2-ethylhexyl) phthalate enhances existing inflammatory profile in monocytes of children with autism. Toxicology, 152597 https://doi.org/10.1016/j.tox.2020.152597

  33. Darnall JE, Kerr JIM, Stark GR (1994) Jak-Stat pathways and transcriptional activation in response to IFNs and other extra cellular signaling protein. Science 264:1415–1421

    Article  Google Scholar 

  34. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53(1):409–435

    Article  CAS  PubMed  Google Scholar 

  35. Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA (2016) Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 6:27618. https://doi.org/10.1038/srep27618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schintu N, Frau L, Ibba M, Caboni P, Garau A, Carboni E, Carta AR (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur J Neurosci 29(5):954–963. https://doi.org/10.1111/j.1460-9568.2009.06657.x

    Article  PubMed  Google Scholar 

  37. Stopponi S, de Guglielmo G, Somaini L, Cippitelli A, Cannella N, Kallupi M, Ubaldi M, Heilig M, Demopulos G, Gaitanaris G, Ciccocioppo R (2013) Activation of PPARγ by pioglitazone potentiates the effects of naltrexone on alcohol drinking and relapse in msP rats. Alcohol Clin Exp Res 37(8):1351–1360. https://doi.org/10.1111/acer.12091

    Article  CAS  PubMed  Google Scholar 

  38. Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161(1–2):113–122. https://doi.org/10.1016/j.jneuroim.2004.12.015

    Article  CAS  PubMed  Google Scholar 

  39. De-Fraja C, Conti L, Magrassi L, Govoni S, Cattaneo E (1998) Members of the JAK/STAT proteins are expressed and regulated during development in the mammalian forebrain. J Neurosci Res 54(3):320–330

    Article  CAS  PubMed  Google Scholar 

  40. Csabai D, Seress L, Varga Z, Ábrahám H, Miseta A, Wiborg O, Czéh B (2017) 2017 Electron microscopic analysis of hippocampal axo-somatic synapses in a chronic stress model for depression. Hippocampus 27(1):17–27. https://doi.org/10.1002/hipo.22650

    Article  CAS  PubMed  Google Scholar 

  41. Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK (2003) PPAR gamma and PPAR delta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci U S A 100(11):6712–7. https://doi.org/10.1073/pnas.1031789100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Napimoga MH, Vieira SM, Dal-Secco D, Freitas A, Souto FO, Mestriner FL, Alves-Filho JC, Grespan R, Kawai T, Ferreira SH, Cunha FQ (2008) Peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-Delta 12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway. J Immunol 180(1):609–617. https://doi.org/10.4049/jimmunol.180.1.609

    Article  CAS  PubMed  Google Scholar 

  43. Harris SG, Phipps RP (2001) The nuclear receptor PPAR-gamma is expressed by mouse T lymphocytes and PPAR-gamma agonists induce apoptosis. Eur J Immunol 31(4):1098–1105. https://doi.org/10.1002/1521-4141(200104)31:4%3c1098::aid-immu1098%3e3.0.co;2-i

    Article  CAS  PubMed  Google Scholar 

  44. Padilla J, Leung E, Phipps RP (2002 Apr) Human B lymphocytes and B lymphomas express PPAR-gamma and are killed by PPAR-gamma agonists. Clin Immunol 103(1):22–33. https://doi.org/10.1006/clim.2001.5181

    Article  CAS  PubMed  Google Scholar 

  45. Garza JC, Guo M, Zhang W, Lu XY (2008) 2008 Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 283(26):18238–47. https://doi.org/10.1074/jbc.M800053200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. A Tiwari S Rahi S Mehan 2020 Elucidation of abnormal extracellular regulated kinase (ERK) signaling and associations with syndromic and non-syndromic autism Curr Drug Targets.Advanceonlinepublication.https://doi.org/10.2174/1389450121666201020155010

  47. Singh RK, Jia C, Garcia F, Carrasco GA, Battaglia G, Muma NA (2010) Activation of the JAK-STAT pathway by olanzapine is necessary for desensitization of serotonin2A receptor-stimulated phospholipase C signaling in rat frontal cortex but not serotonin2A receptor-stimulated hormone release. J Psychopharmacol 24(7):1079–88. https://doi.org/10.1177/0269881109103090

    Article  CAS  PubMed  Google Scholar 

  48. Orellana DI, Quintanilla RA, Gonzalez-Billault C, Maccioni RB (2005) Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotox Res 8(3–4):295–304. https://doi.org/10.1007/BF03033983

    Article  CAS  PubMed  Google Scholar 

  49. Gu J, Li G, Sun T, Su Y, Zhang X, Shen J, Tian Z, Zhang J (2008) Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J Neurooncol 89(1):9–17. https://doi.org/10.1007/s11060-008-9590-9

    Article  CAS  PubMed  Google Scholar 

  50. Tsai MC, Chen WJ, Tsai MS, Ching CH, Chuang JI (2011) Melatonin attenuates brain contusion-induced oxidative insult, inactivation of signal transducers and activators of transcription 1, and upregulation of suppressor of cytokine signaling-3 in rats. J Pineal Res 51(2):233–245. https://doi.org/10.1111/j.1600-079X.2011.00885.x

    Article  CAS  PubMed  Google Scholar 

  51. R Wafer P Tandon JEN Minchin 2017 The role of peroxisome proliferator-activated receptor gamma (PPARG) in adipogenesis: applying knowledge from the fish aquaculture industry to biomedical research Front Endocrinol (Lausanne) 8102https://doi.org/10.3389/fendo.2017.00102

  52. Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K (2018) Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Front Immunol 9:893. https://doi.org/10.3389/fimmu.2018.00893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86. https://doi.org/10.1038/34184

    Article  CAS  PubMed  Google Scholar 

  54. Abdullah Z, Geiger S, Nino-Castro A, Böttcher JP, Muraliv E, Gaidt M, Klotz L (2012) Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection. PloS one 7(5):e37349

    Article  CAS  PubMed  Google Scholar 

  55. Abdullah Z, Geiger S, Nino-Castro A, Böttcher JP, Muraliv E, Gaidt M, Klotz L (2012) Lack of PPARγ in myeloid cells confers resistance to Listeria monocytogenes infection. PloS one 7(5):e37349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Chinetti-Gbaguidi G (2007) PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143

    Article  CAS  PubMed  Google Scholar 

  57. Eslami H, Sharifi AM, Rahimi H, Rahati M (2014) Protective effect of telmisartan against oxidative damage induced by high glucose in neuronal PC12 cell. Neurosci Lett 558:31–36

    Article  CAS  PubMed  Google Scholar 

  58. Zhao Y, Patzer A, Gohlke P, Herdegen T, Culman J (2005) The intracerebral application of the PPARγ-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur J Neurosci 22(1):278–282. https://doi.org/10.1111/j.1460-9568.2005.04200.x

    Article  PubMed  Google Scholar 

  59. Zhao X, Strong R, Zhang J, Sun G, Tsien JZ, Cui Z, Grotta JC, Aronowski J (2009) Neuronal PPAR-gamma deficiency increases susceptibility to brain damage after cerebral ischemia. J Neurosci 29(19):6186–6195. https://doi.org/10.1523/JNEUROSCI.5857-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Combs CK, Bates P, Karlo JC, Landreth GE (2001) Regulation of β-amyloid stimulated pro-inflammatory responses by peroxisome proliferator-activated receptor α. Neurochem Int 39(5–6):449–457

    Article  CAS  PubMed  Google Scholar 

  61. Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK (2004) Ligands for the peroxisome proliferator-activated receptor-γ and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol 148(1–2):116–126

    Article  CAS  PubMed  Google Scholar 

  62. Yu JH, Kim KH, Kim H (2007) SOCS 3 and PPAR-gamma ligands inhibit the expression of IL-6 and TGF-beta1 by regulating JAK2/STAT3 signaling in pancreas. Int J Biochem Cell Biol 40(4):677–88. https://doi.org/10.1016/j.biocel.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  63. Song EA, Lim JW, Kim H (2017) Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol 88:60–68. https://doi.org/10.1016/j.biocel.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  64. Nicholson SE, De Souza D, Fabri LJ, Corbin J, Willson TA, Zhang J-G, Baca M (2000) Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci 97(12):6493–6498. https://doi.org/10.1073/pnas.100135197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ju KD, Lim JW, Kim H (2017) Peroxisome proliferator-activated receptor-gamma inhibits the activation of in cerulein-stimulated pancreatic acinar cells. J Cancer Prev 22(3):189–194. https://doi.org/10.15430/JCP.2017.22.3.189

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li Q, Wang M, Tan L, Wang C, Ma J, Li N, Li J (2005) Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J Lipid Res 46(9):1904–1913. https://doi.org/10.1194/jlr.m500033-jlr200

    Article  CAS  PubMed  Google Scholar 

  67. Natarajan C, Bright JJ (2002) Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 3(2):59–70. https://doi.org/10.1038/sj.gene.6363832

    Article  CAS  PubMed  Google Scholar 

  68. Gulbins A, Grassmé H, Hoehn R, Kohnen M, Edwards MJ, Kornhuber J, Gulbins E (2016) Role of Janus-kinases in major depressive disorder. Neurosignals 2016 24(1):71–80. https://doi.org/10.1159/000442613

    Article  Google Scholar 

  69. Nicolas CS, Peineau S, Amici M, Csaba Z, Fafouri A, Javalet C, Collett VJ, Hildebrandt L, Seaton G, Choi SL, Sim SE, Bradley C, Lee K, Zhuo M, Kaang BK, Gressens P, Dournaud P, Fitzjohn SM, Bortolotto ZA, Cho K, Collingridge GL (2012) The Jak/STAT pathway is involved in synaptic plasticity. Neuron 73(2):374–390. https://doi.org/10.1016/j.neuron

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang X, Liu Q, Ihsan A, Huang L, Dai M, Hao H, Cheng G, Liu Z, Wang Y, Yuan Z (2012) JAK/STAT pathway plays a critical role in the pro-inflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol Sci 127(2):412–24. https://doi.org/10.1093/toxsci/kfs106

    Article  CAS  PubMed  Google Scholar 

  71. Chin YE, Kitagawa M, Kuida K, Flavell RA, Fu XY (1997) Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol 17(9):5328–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Charras A, Arvaniti P, Le Dantec C, Dalekos GN, Zachou K, Bordron A, Renaudineau Y (2019) JAK inhibitors and oxidative stress control. Front Immunol 10:2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang XL, Qiao CM, Liu JO, Li CY (2017) Inhibition of the SOCS1-JAK2-STAT3 signaling pathway confers neuroprotection in rats with ischemic stroke. Cell Physiol Biochem 44(1):85–98. https://doi.org/10.1159/000484585

    Article  PubMed  Google Scholar 

  74. Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36(6):361–365

    Article  PubMed  Google Scholar 

  75. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Erratum In Ann Neurol 57(1):67–81. https://doi.org/10.1002/ana.20315

    Article  CAS  Google Scholar 

  76. Lee N, Jae Y, Kim M, Cho T, Lee C, Hong YR, Hyeon DY, Ahn S, Kwon H, Kim K, Jung JH, Chae S, Shin JO, Bok J, Byun Y, Hwang D, Koo J (2020) A pathogen-derived metabolite induces microglial activation via odorant receptors. FEBS J 287(17):3841–3870. https://doi.org/10.1111/febs.15234

    Article  CAS  PubMed  Google Scholar 

  77. Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. https://doi.org/10.1007/s00011-019-01231-1

    Article  PubMed  PubMed Central  Google Scholar 

  78. Millot P, San C, Bennana E, Porte B, Vignal N, Hugon J, Mouton-Liger F (2020) STAT3 inhibition protects against neuroinflammation and BACE1 upregulation induced by systemic inflammation. Immunol Lett. https://doi.org/10.1016/j.imlet.2020.10.004

    Article  PubMed  Google Scholar 

  79. Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260(5115):1808–1810. https://doi.org/10.1126/science.8511589

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt S, Moric E, Schmidt M, Sastre M, Feinstein DL, Heneka MT (2004) Anti-inflammatory and antiproliferative actions of PPAR-gamma agonists on T lymphocytes derived from MS patients. J Leukoc Biol 75(3):478–485. https://doi.org/10.1189/jlb.0803402

    Article  CAS  PubMed  Google Scholar 

  81. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662):79–82. https://doi.org/10.1038/34178

    Article  CAS  PubMed  Google Scholar 

  82. Khera R, Mehan S, Bhalla S, Kumar S, Alshammari A, Alharbi M, Sadhu SS (2022) Guggulsterone mediated JAK/STAT and PPAR-gamma modulation prevents neurobehavioral and neurochemical abnormalities in propionic acid-induced experimental model of autism. Molecules 27:889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piochon C, Kano M, Hansel C (2016) LTD-like molecular pathways in developmental synaptic pruning. Nat Neurosci 19(10):1299–1310. https://doi.org/10.1038/nn.4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hansel C (2019) 2018 Deregulation of synaptic plasticity in autism. Neurosci Lett 1(688):58–61. https://doi.org/10.1016/j.neulet.2018.02.003

    Article  CAS  Google Scholar 

  85. Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28(6):517–527. https://doi.org/10.1016/0028-3932(90)90031-i

    Article  CAS  PubMed  Google Scholar 

  86. Farshbaf MJ, Ghaedi K, Shirani M, Nasr-Esfahani MH (2014) Peroxisome proliferator activated receptor gamma (PPARγ) as a therapeutic target for improvement of cognitive performance in Fragile-X. Med Hypotheses 82(3):291–294. https://doi.org/10.1016/j.mehy.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  87. D’ Angelo M, Castelli V, Catanesi M, Antonosante A, Dominguez-Benot R, Ippoliti R, Cimini A (2019) PPARγ and cognitive performance. Int J Mol Sci 20(20):5068. https://doi.org/10.3390/ijms20205068

    Article  CAS  Google Scholar 

  88. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L (2009) Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 42(10–11):1032–1040

    Article  CAS  PubMed  Google Scholar 

  89. Nadeem, Ahmed; Ahmad, Sheikh F.; Al-Harbi, Naif O.; Alasmari, Abdullah F.; AL-Ayadhi, Laila Y.; Alasmari, Fawaz; Ibrahim, Khalid E.; Attia, Sabry M.; Bakheet, Saleh A. 2020. Upregulation of enzymatic antioxidants in CD4+ T cells of autistic children. Biochimie, 171–172 205–212 https://doi.org/10.1016/j.biochi.2020.03.009

  90. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7) e134https://doi.org/10.1038/tp.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nadeem, Ahmed; Ahmad, Sheikh F.; Attia, Sabry M.; Bakheet, Saleh A.; Al-Harbi, Naif O.; AL-Ayadhi, Laila Y. 2017. Activation of IL-17 receptor leads to increased oxidative inflammation in peripheral monocytes of autistic children. Brain, Behavior, and Immunity, S0889159117304257–. https://doi.org/10.1016/j.bbi.2017.09.010

  92. Qu Y, Oyan AM, Liu R, Hua Y, Zhang J, Hovland R, Popa M, Liu X, Brokstad KA, Simon R, Molven A, Lin B, Zhang WD, McCormack E, Kalland KH, Ke XS (2013) Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res 73(23):7090–7100. https://doi.org/10.1158/0008-5472.CAN-13-1560

    Article  CAS  PubMed  Google Scholar 

  93. Waris G, Huh KW, Siddiqui A (2001) Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol 21(22):7721–7730. https://doi.org/10.1128/MCB.21.22.7721-7730.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nadeem Ahmed, Ahmad Sheikh F, Attia Sabry M, AL-Ayadhi Laila Y, Al-Harbi Naif O, Bakheet Saleh A (2019) Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism. Prog Neuro-Psychopharmacology Biol Psychiatry 88:352–359. https://doi.org/10.1016/j.pnpbp.2018.08.020

    Article  CAS  Google Scholar 

  95. Manea A, Tanase LI, Raicu M, Simionescu M (2010) Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. ArteriosclerThrombVasc Biol 30(1):105–112. https://doi.org/10.1161/ATVBAHA.109.193896

    Article  CAS  Google Scholar 

  96. Al-Harbi Naif O, Ahmed Nadeem, Ahmad Sheikh F, AL-Ayadhi Laila Y, Al-Harbi Mohammad M, As Sobeai Homood M, Ibrahim Khalid E, Bakheet Saleh A (2020) Elevated expression of toll-like receptor 4 is associated with NADPH oxidase-induced oxidative stress in B cells of children with autism. Int Immunopharmacol 84:106555. https://doi.org/10.1016/j.intimp.2020.106555

    Article  CAS  PubMed  Google Scholar 

  97. Ahmed Nadeem, Ahmad Sheikh F, Bakheet Saleh A, Al-Harbi Naif O, AL-Ayadhi Laila Y, Attia Sabry M, Zoheir Khairy MA (2017) Toll-like receptor 4 signaling is associated with upregulated NADPH oxidase expression in peripheral T cells of children with autism. Brain Behav Immun 61:146–154. https://doi.org/10.1016/j.bbi.2016.12.024

    Article  CAS  Google Scholar 

  98. Giampietro L, Gallorini M, De Filippis B, Amoroso R, Cataldi A, di Giacomo V (2019) PPAR-γ agonist GL516 reduces oxidative stress and apoptosis occurrence in a rat astrocyte cell line. Neurochem Int 126:239–245. https://doi.org/10.1016/j.neuint.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  99. Chandra M, Miriyala S, Panchatcharam M (2017) PPARγand Its Role in Cardiovascular Diseases. PPAR Res 2017:1–10. https://doi.org/10.1155/2017/6404638

    Article  CAS  Google Scholar 

  100. Randy LH, Guoying B (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson’s disease. Curr Neuropharmacol 5(1):35–46. https://doi.org/10.2174/157015907780077123

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gupte AA, Liu JZ, Ren Y, Minze LJ, Wiles JR, Collins AR, Lyon CJ, Pratico D, Finegold MJ, Wong ST, Webb P, Baxter JD, Moore DD, Hsueh WA (2012) Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology 526:2001–11. https://doi.org/10.1002/hep.2394

    Article  Google Scholar 

  102. Chiang MC, Chern Y, Huang RN (2012) PPARgamma rescue of the mitochondrial dysfunction in Huntington’s disease. Neurobiol Dis 45(1):322–328. https://doi.org/10.1016/j.nbd.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  103. Gurney JG, McPheeters ML, Davis MM (2006) Parental report of health conditions and health care use among children with and without autism: national survey of children’s health. Arch PediatrAdolesc Med 160(8):825–830. https://doi.org/10.1001/archpedi.160.8.825

    Article  Google Scholar 

  104. Albert, P. R., &Benkelfat, C. 2013 The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies.

  105. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiat 67(5):446–457

    Article  CAS  PubMed  Google Scholar 

  106. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M (2015) Cumulative meta-analysis of interleukins 6 and 1β tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–15. https://doi.org/10.1016/j.bbi.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kong E, Sucic S, Monje FJ, Savalli G, Diao W, Khan D, Ronovsky M, Cabatic M, Koban F, Freissmuth M, Pollak DD (2015) STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behaviour. Erratum In Sci Rep 5:9009. https://doi.org/10.1038/srep09009

    Article  CAS  Google Scholar 

  108. Guan X, Wang Q, Liu M, Sun A, Li X. 2020 Possible involvement of the IL-6/JAK2/STAT3 pathway in the hypothalamus in depressive-like behaviour of rats exposed to chronic mild stress. Neuropsychobiology.:1–9. https://doi.org/10.1159/000509908. Epub ahead of print.

  109. Al-Samhari MM, Al-Rasheed NM, Al-Rejaie S, Al-Rasheed NM, Hasan IH, Mahmoud AM, Dzimiri N (2016) Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects. Exp Biol Med 241(5):509–518

    Article  CAS  Google Scholar 

  110. Beheshti, F., Hosseini, M., Hashemzehi, M., Soukhtanloo, M., &Asghari, A. 2019 The effects of PPAR-γ agonist pioglitazone on anxiety and depression-like behaviours in lipopolysaccharide injected rats. Toxin Rev, 1–10.

  111. Kemp DE, Schinagle M, Gao K, Conroy C, Ganocy SJ, Ismail-Beigi F, Calabrese JR (2014) PPAR-γ agonism as a modulator of mood: proof-of-concept for pioglitazone in bipolar depression. CNS Drugs 28(6):571–581. https://doi.org/10.1007/s40263-014-0158-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mitochondrial electron transport chain complexes in children with autism. J Neurochem 117(2):209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Graf WD, Marin-Garcia J, Gao HG, Pizzo S, Naviaux RK, Markusic D, Barshop BA, Courchesne E, Haas RH (2000) Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J Child Neurol 15(6):357–361. https://doi.org/10.1177/088307380001500601

    Article  CAS  PubMed  Google Scholar 

  114. Abid H, Ryan ZC, Delmotte P, Sieck GC, Lanza IR (2020) Extramyocellular interleukin-6 influences skeletal muscle mitochondrial physiology through canonical JAK/STAT signaling pathways. FASEB J 34(11):14458–14472

    Article  CAS  PubMed  Google Scholar 

  115. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J, Straubhaar J, Czech MP, Corvera S (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114(9):1281–1289. https://doi.org/10.1172/JCI21752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rong JX, Klein JL, Qiu Y, Xie M, Johnson JH, Waters KM, Zhang V, Kashatus JA, Remlinger KS, Bing N, Crosby RM, Jackson TK, Witherspoon SM, Moore JT, Ryan TE, Neill SD, Strum JC (2011) Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res 2011:179454. https://doi.org/10.1155/2011/179454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. El-Ansary, A., Zayed, N., Al-Ayadhi, L., Qasem, H., Anwar, M., Meguid, N. A.,&Bjørklund, G. 2019. GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta NeurologicaBelgica, 1–13.

  118. Eftekharian MM, Komaki A, Oskooie VK, Namvar A, Taheri M, Ghafouri-Fard S (2019) Assessment of apoptosis pathway in peripheral blood of autistic patients. J Mol Neurosci 69(4):588–596

    Article  CAS  PubMed  Google Scholar 

  119. Rozovski U, Harris DM, Li P, Liu Z, Wu JY, Grgurevic S, Faderl S, Ferrajoli A, Wierda WG, Martinez M, Verstovsek S, Keating MJ, Estrov Z (2016) At high levels, constitutively activated stat3 induces apoptosis of chronic lymphocytic leukemia cells. J Immunol 196(10):4400–9. https://doi.org/10.4049/jimmunol.1402108

    Article  CAS  PubMed  Google Scholar 

  120. Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Bronfman M (2007) Peroxisome proliferator-activated receptor γ up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 282(51):37006–37015

    Article  CAS  PubMed  Google Scholar 

  121. Lin H, Lin TN, Cheung WM, Nian GM, Tseng PH, Chen SF, Chen JJ, Shyue SK, Liou JY, Wu CW, Wu (2002) KK Cyclooxygenase-1 and bicistronic cyclooxygenase-1/prostacyclin synthase gene transfer protect against ischemic cerebral infarction. Circulation 105(16):1962–9. https://doi.org/10.1161/01.cir.0000015365.49180.05

    Article  CAS  PubMed  Google Scholar 

  122. Yang C, Jo SH, Csernus B, Hyjek E, Liu Y, Chadburn A, Wang YL (2007) Activation of peroxisome proliferator-activated receptor gamma contributes to the survival of T lymphoma cells by affecting cellular metabolism. Am J Pathol 170(2):722–732. https://doi.org/10.2353/ajpath.2007.060651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anderson LT, Campbell M, Grega DM, Perry R, Small AM, Green WH (1984) Haloperidol in the treatment of infantile autism: effects on learning and behavioral symptoms. Am J Psychiatry 141(10):1195–1202. https://doi.org/10.1176/ajp.141.10.1195

    Article  CAS  PubMed  Google Scholar 

  124. Anderson LT, Campbell M, Adams P, Small AM, Perry R, Shell J (1989) The effects of haloperidol on discrimination learning and behavioural symptoms in autistic children. J Autism Dev Disord 19(2):227–239

    Article  CAS  PubMed  Google Scholar 

  125. Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Flanagan SD (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA 266(13):1793–1800

    Article  CAS  PubMed  Google Scholar 

  126. Nakamura K, Sekine Y, Ouchi Y, Tsujii M, Yoshikawa E, Futatsubashi M, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Matsuzaki H, Suda S, Sugiyama T, Takei N, Mori N (2010) Brain serotonin and dopamine transporter bindings in adults with high-functioning autism. Arch Gen Psychiatry 67(1):59–68. https://doi.org/10.1001/archgenpsychiatry.2009.137

    Article  CAS  PubMed  Google Scholar 

  127. Chao OY, Pathak SS, Zhang H, Dunaway N, Li JS, Mattern C, Yang YM (2020) Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol Brain 13(1):1–16

    Article  CAS  Google Scholar 

  128. Berhow MT, Hiroi N, Kobierski LA, Hyman SE, Nestler EJ (1996) Influence of cocaine on the JAK–STAT pathway in the mesolimbic dopamine system. J Neurosci 16(24):8019–8026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with IκBα induction and block of NFκB and iNOS activation. J Neurochem 88(2):494–501

    Article  CAS  PubMed  Google Scholar 

  130. Collin M, Thiemermann C (2003) The PPAR-γ ligand 15-deoxyΔ12, 14 prostaglandin J2 reduces the liver injury in endotoxic shock. Eur J Pharmacol 476(3):257–258

    Article  CAS  PubMed  Google Scholar 

  131. Collin M, Patel NS, Dugo L, Thiemermann C (2004) Role of peroxisome proliferator-activated receptor-γ in the protection afforded by 15-deoxyΔ12, 14 prostaglandin J2 against the multiple organ failure caused by endotoxin. Crit Care Med 32(3):826–831

    Article  CAS  PubMed  Google Scholar 

  132. Kim EJ, Kwon KJ, Park JY, Lee SH, Moon CH, Baik EJ (2002) Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2. Brain Res 941(1–2):1–10. https://doi.org/10.1016/s0006-8993(02)02480-0

    Article  CAS  PubMed  Google Scholar 

  133. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Paris Autism Research International Sibpair Study Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29. https://doi.org/10.1038/ng1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J, Bockholt A, Jones IR, Craddock N, Cook EH Jr, Vicente A, Sommer SS (2005) Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 10(4):329–332. https://doi.org/10.1038/sj.mp.4001629

    Article  CAS  PubMed  Google Scholar 

  135. Etherton M, Földy C, Sharma M, Tabuchi K, Liu X, Shamloo M, Südhof TC (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci 108(33):13764–13769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. D’Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam ATN, Walsh CA (2015) Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88(5):910–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nord AS, Roeb W, Dickel DE, Walsh T, Kusenda M, O’Connor KL, Malhotra D, McCarthy SE, Stray SM, Taylor SM, Sebat J (2011 Jun) STAART Psychopharmacology Network King B King MC McClellan JM 2011 Reduced transcript expression of genes affected by inherited and de novo CNVs in autism. Eur J Hum Genet 19(6):727–31. https://doi.org/10.1038/ejhg.2011.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Halgren C, Kjaergaard S, Bak M, Hansen C, El-Schich Z, Anderson CM, Henriksen KF, Hjalgrim H, Kirchhoff M, Bijlsma EK, Nielsen M, den Hollander NS, Ruivenkamp CA, Isidor B, Le Caignec C, Zannolli R, Mucciolo M, Renieri A, Mari F, Anderlid BM, Andrieux J, Dieux A, Tommerup N, Bache I (2012 Sep) 2011 Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Clin Genet 82(3):248–55. https://doi.org/10.1111/j.1399-0004.2011.01755.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Santen GW, Aten E, Sun Y, Almomani R, Gilissen C, Nielsen M, Kant SG, Snoeck IN, Peeters EA, Hilhorst-Hofstee Y, Wessels MW, den Hollander NS, Ruivenkamp CA, van Ommen GJ, Breuning MH, den Dunnen JT, van Haeringen A, Kriek M (2012) Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet 44(4):379–380. https://doi.org/10.1038/ng.2217

    Article  CAS  PubMed  Google Scholar 

  140. Shibutani M, Horii T, Shoji H, Morita S, Kimura M, Terawaki N, Miyakawa T, Hatada I (2017) Arid1b haploinsufficiency causes abnormal brain gene expression and autism-related behaviours in mice. Int J Mol Sci 18(9):1872. https://doi.org/10.3390/ijms18091872

    Article  CAS  PubMed Central  Google Scholar 

  141. O’Callaghan JP, Kelly KA, VanGilder RL, Sofroniew MV, Miller DB (2014) Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity. PLoS ONE 9(7):e102003. https://doi.org/10.1371/journal.pone.0102003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen E, Xu D, Lan X, Jia B, Sun L, C Zheng J, Peng H (2013) A novel role of the STAT3 pathway in brain inflammation-induced human neural progenitor cell differentiation. Curr Mol Med 13(9):1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Zhang X (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14(1):1–12

    Article  CAS  Google Scholar 

  144. Chen XM, Yu YH, Wang L, Zhao XY, Li JR (2019) Effect of the JAK2/STAT3 signaling pathway on nerve cell apoptosis in rats with white matter injury. Eur Rev Med Pharmacol Sci 23(1):321–327

    PubMed  Google Scholar 

  145. Duan W, Yang Y, Yi W, Yan J, Liang Z, Wang N, Yi D (2013) New Role of JAK2/STAT3 Signaling in endothelial cell oxidative stress injury and protective effect of melatonin. PLoS ONE 8(3):e57941. https://doi.org/10.1371/journal.pone.0057941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang B, Wang X, Yang S, Liu X, Feng D, Lu F, Gao G (2016) Neuroprotective effects of nitidine in Parkinson’s disease models through inhibiting microglia activation: role of the Jak2–Stat3 pathway. RSC Adv 6(75):71328–71337. https://doi.org/10.1039/c6ra11759g

    Article  CAS  Google Scholar 

  147. Reichenbach N, Delekate A, Plescher M, Schmitt F, Krauss S, Blank N, Halle A, Petzold GC (2019) Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol Med 11(2):e9665. https://doi.org/10.15252/emmm.201809665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shibata N, Yamamoto T, Hiroi A, Omi Y, Kato Y, Kobayashi M (2009) Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1 mutated amyotrophic lateral sclerosis. Neuropathology 2010 Aug 30(4):353–360. https://doi.org/10.1111/j.1440-1789.2009.01078.x

    Article  Google Scholar 

  149. Zhu YF, Wang WP, Zheng XF, Chen Z, Chen T, Huang ZY, Jia LJ, Lei WL (2020) Characteristic response of striatal astrocytes to dopamine depletion. Neural Regen Res 15(4):724–730. https://doi.org/10.4103/1673-5374.266917

    Article  PubMed  Google Scholar 

  150. Hao Y, Yang X, Chen C, Yuan-Wang, Wang X, Li M, Yu Z. (2010) STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. Int J Radiat Biol.;86(1):27–36. https://doi.org/10.3109/09553000903264507. PMID: 20070213.

  151. Sarmiento Soto, M., Larkin, J. R., Martin, C., Khrapitchev, A. A., Maczka, M., Economopoulos, V. Sibson, N. R. 2020. STAT3-mediated astrocyte reactivity associated with brain metastasis contributes to neurovascular dysfunction. Cancer Research, canres.2251.2020. https://doi.org/10.1158/0008-5472.can-20-2251

  152. Chen, S. L., Cai, G. X., Ding, H. G., Liu, X. Q., Wang, Z. H., Jing, Y. W., ... & Wen, M. Y 2020 JAK/STAT signaling pathway-mediated microRNA-181b promoted blood-brain barrier impairment by targeting sphingosine-1-phosphate receptor 1 in septic rats. Annals Transl Med 8 21

  153. Tan MSY, Sandanaraj E, Chong YK, Lim SW, Koh LWH, Ng WH, Tan NS, Tan P, Ang BT, Tang C (2019) A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nat Commun 10(1):3601. https://doi.org/10.1038/s41467-019-11614-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. West AJ, Tsui V, Stylli SS, Nguyen HPT, Morokoff AP, Kaye AH, Luwor RB (2018) The role of interleukin-6-STAT3 signalling in glioblastoma. Oncol Lett 16:44095–4104. https://doi.org/10.3892/ol.2018.9227

    Article  CAS  Google Scholar 

  155. McFarland BC, Ma JY, Langford CP, Gillespie GY, Yu H, Zheng Y, Nozell SE, Huszar D, Benveniste EN (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10(12):2384–93. https://doi.org/10.1158/1535-7163.MCT-11-0480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Träger U, Magnusson A, Lahiri Swales N, Wild E, North J, Lowdell M, Björkqvist M. 2013 ho JAK/STAT signalling in Huntington’s disease immune cells. PLoSCurr.Dec 13;5 https://doi.org/10.1371/currents.hd.5791c897b5c3bebeed93b1d1da0c0648

  157. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schäffer AA, Puck JM, Grimbacher B (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357(16):1608–1619. https://doi.org/10.1056/NEJMoa073687

    Article  CAS  PubMed  Google Scholar 

  158. Liu S, Liu X, Xiong H, Wang W, Liu Y, Yin L, Tu C, Wang H, Xiang X, Xu J, Duan B, Tao A, Zhao Z, Mei Z (2019) CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun 80:711–724. https://doi.org/10.1016/j.bbi.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  159. Wang LH, Yang XY, Zhang X, Huang J, Hou J, Li J, Farrar WL (2004) Transcriptional inactivation of STAT3 by PPARγ suppresses IL-6-responsive multiple myeloma cells. Immunity 20(2):205–218

    Article  CAS  PubMed  Google Scholar 

  160. Guo T, Wang Y, Guo Y, Wu S, Chen W, Liu N, Wang Y, Geng D (2018) (2018) 1, 25–D3 Protects From Cerebral Ischemia by Maintaining BBB Permeability via PPAR-γ Activation. Front Cell Neurosci 17(12):480. https://doi.org/10.3389/fncel.2018.00480

    Article  CAS  Google Scholar 

  161. Keledjian K, Tsymbalyuk O, Semick S, Moyer M, Negoita S, Kim K, Ivanova S, Gerzanich V, Simard JM (2020) The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates neurofunctional and neuroinflammatory abnormalities in a rat model of Gulf War Illness. PLoS ONE 15(11):e0242427. https://doi.org/10.1371/journal.pone.0242427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Carta AR, Frau L, Pisanu A, Wardas J, Spiga S, Carboni E (2011) Rosiglitazone decreases peroxisome proliferator receptor-γ levels in microglia and inhibits TNF-α production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194:250–261. https://doi.org/10.1016/j.neuroscience.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  163. Abd El-Abhar H, El Fattah MA, Wadie W, El-Tanbouly DM (2018) Cilostazol disrupts TLR-4 Akt/GSK-3β/CREB and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington’s disease. Plos one 13(9):e0203837

    Article  CAS  Google Scholar 

  164. Jensen KV, Cseh O, Aman A, Weiss S, Luchman HA (2017) The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PLoS ONE 12(12):e0189670. https://doi.org/10.1371/journal.pone.0189670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Damm J, Harden LM, Gerstberger R, Roth J, Rummel C (2013) The putative JAK-STAT inhibitor AG490 exacerbates LPS-fever, reduces sickness behaviour, and alters the expression of pro-and anti-inflammatory genes in the rat brain. Neuropharmacology 71:98–111

    Article  CAS  PubMed  Google Scholar 

  166. Al DU, Ji TL, Yang B, Cao JF, Zhang XG, Li Y, Pan S, Zhang B, Hu ZB, Zeng XW (2013) Neuroprotective effect of AG490 in experimental traumatic brain injury of rats. Chin Med J (Engl) 126(15):2934–2937

    Google Scholar 

  167. Choi M, Kim H, Yang EJ, Kim HS (2020) Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease. J Pharmacol Sci 143(4):290–299

    Article  CAS  PubMed  Google Scholar 

  168. Leidgens V, Proske J, Rauer L, Moeckel S, Renner K, Bogdahn U, Riemenschneider MJ, Proescholdt M, Vollmann-Zwerenz A, Hau P, Seliger C (2017) Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation. Oncotarget 8(5):8250–8263. https://doi.org/10.18632/oncotarget.14159

    Article  PubMed  Google Scholar 

  169. Li SF, Ouyang BS, Zhao X, Wang YP. 2018 Analgesic effect of AG490, a Janus kinase inhibitor, on oxaliplatin-induced acute neuropathic pain. Neural Regen Res.;13(8):1471-1476. Erratum in: Neural Regen Res. 2019 Apr;14(4):612 https://doi.org/10.4103/1673-5374.235305

  170. García-Bueno B, Madrigal JL, Lizasoain I, Moro MA, Lorenzo P, Leza JC (2005) Peroxisome proliferator-activated receptor gamma activation decreases neuroinflammation in brain after stress in rats. Biol Psychiatry 57(8):885–894. https://doi.org/10.1016/j.biopsych.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  171. García-Bueno B, Caso JR, Pérez-Nievas BG, Lorenzo P, Leza JC (2007) Effects of peroxisome proliferator-activated receptor gamma agonists on brain glucose and glutamate transporters after stress in rats. Neuropsychopharmacol 32(6):1251–1260

    Article  CAS  Google Scholar 

  172. Jahrling JB, Hernandez CM, Denner L, Dineley KT (2014) PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer’s disease-related cognitive enhancement. J Neurosci 34(11):4054–4063. https://doi.org/10.1523/JNEUROSCI.4024-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Martinez AA, Morgese MG, Pisanu A, Macheda T, Paquette MA, Seillier A, Cassano T, Carta AR, Giuffrida A (2015) Activation of PPAR-gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. NeurobiolDis 74:295–304. https://doi.org/10.1016/j.nbd.2014.11.024

    Article  CAS  Google Scholar 

  174. Chamberlain S, Gabriel H, Strittmatter W, Didsbury J (2020) An exploratory phase IIa Study of the PPAR delta/gamma agonist T3D–959 assessing metabolic and cognitive function in subjects with mild to moderate Alzheimer’s disease. J Alzheimer’s Disease 73(3):1085–1103

    Article  CAS  Google Scholar 

  175. Kielian T, Syed MM, Liu S, Phulwani NK, Phillips N, Wagoner G, Drew PD, Esen N (2008) The synthetic peroxisome proliferator-activated receptor-gamma agonist ciglitazone attenuates neuroinflammation and accelerates encapsulation in bacterial brain abscesses. J Immunol 180(7):5004–5016. https://doi.org/10.4049/jimmunol.180.7.5004

    Article  CAS  PubMed  Google Scholar 

  176. Seok H, Lee M, Shin E (2019) Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci Rep 9:4414. https://doi.org/10.1038/s41598-019-40736-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mirza R, Sharma B. 2019 A selective peroxisome proliferator-activated receptor-γ agonist benefited propionic acid induced autism-like behavioural phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem

  178. Z-J Liu Z-H Li L Liu W-X Tang Y Wang M-R Dong C Xiao 2016 Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease Front Pharmacol 7https://doi.org/10.3389/fphar.2016.00261

  179. Weng Q-F, Chen G-B, Min-Guang Xu, Long R-T, Wang H, Wang X-Y, Jiang C-N, Yi X-N (2019) Upregulation of PPAR-gamma activity nhibits cyclooxygenase 2 expression in cortical neurons with N-methyl-d-aspartic acid induced excitatory neurotoxicity. Biotechnol Biotechnol Equip 33(1):1018–1023. https://doi.org/10.1080/13102818.2019.1634488

    Article  CAS  Google Scholar 

  180. Katsouri L, Lim YM, Blondrath K, Eleftheriadou I, Lombardero L, Birch AM, Sastre M (2016) PPARγ-coactivator-1α gene transfer reduces neuronal loss and amyloid-β generation by reducing β-secretase in an Alzheimer’s disease model. Proc Natl Acad Sci 113(43):12292–12297. https://doi.org/10.1073/pnas.1606171113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Heneka MT, Klockgether T, Feinstein DL (2000) Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. Erratum In J Neurosci 2000 Nov 15 20(22) 20(18):6862–6867. https://doi.org/10.1523/JNEUROSCI.20-18-06862.2000

    Article  CAS  Google Scholar 

  182. Wu XJ, Sun XH, Wang SW, Chen JL, Bi YH, Jiang DX (2018) Mifepristone alleviates cerebral ischemia-reperfusion injury in rats by stimulating PPAR γ. Eur Rev Med Pharmacol Sci 22(17):5688–5696. https://doi.org/10.26355/eurrev_201809_15836

    Article  PubMed  Google Scholar 

  183. Bhandari R, Kuhad A (2017) Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Int 103:8–23. https://doi.org/10.1016/j.neuint.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  184. You, Y.-H. Qin Z.-Q., Zhang, H.-L. Yuan, Z.-H., & Yu X 2019 MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Bioscience Reports BSR20181904 https://doi.org/10.1042/bsr20181904

  185. Masciopinto F, Di Pietro N, Corona C, Bomba M, Pipino C, Curcio M, Sensi SL (2012) Effects of long-term treatment with pioglitazone on cognition and glucose metabolism of PS1-KI, 3xTg-AD and wild-type mice. Cell Death Dis 3(12):e448–e448. https://doi.org/10.1038/cddis.2012.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mirza R, Sharma B (2019) Benefits of Fenofibrate in prenatal valproic acid-induced autism spectrum disorder related phenotype in rats. Brain Res Bull 147:36–46. https://doi.org/10.1016/j.brainresbull.2019.02.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Chairman, Mr. Parveen Garg, and Director, Dr. G. D. Gupta, ISF College of Pharmacy, Moga (Punjab), India, for their excellent vision and support.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft of the review, Rishabh Khera and Sumit Kumar; Conceptualization, Supervision, Sidharth Mehan; Writing review & editing, literature survey, Pranshul Sethi, Sonalika Bhalla, Aradhana Prajapati.

All authors agree to be accountable for all aspects of work, ensuring integrity and accuracy.

Corresponding author

Correspondence to Sidharth Mehan.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Authors approve for submitting the publication.

Consent to Participate

Not applicable.

Competing Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khera, R., Mehan, S., Kumar, S. et al. Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol 59, 3888–3912 (2022). https://doi.org/10.1007/s12035-022-02819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02819-1

Keywords

Navigation