Skip to main content
Log in

Huntington Disease Gene Expression Signatures in Blood Compared to Brain of YAC128 Mice as Candidates for Monitoring of Pathology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

While the genetic cause of Huntington disease (HD) is known since 1993, still no cure exists. Therapeutic development would benefit from a method to monitor disease progression and treatment efficacy, ideally using blood biomarkers. Previously, HD-specific signatures were identified in human blood representing signatures in human brain, showing biomarker potential. Since drug candidates are generally first screened in rodent models, we aimed to identify HD signatures in blood and brain of YAC128 HD mice and compare these with previously identified human signatures. RNA sequencing was performed on blood withdrawn at two time points and four brain regions from YAC128 and control mice. Weighted gene co-expression network analysis was used to identify clusters of co-expressed genes (modules) associated with the HD genotype. These HD-associated modules were annotated via text-mining to determine the biological processes they represented. Subsequently, the processes from mouse blood were compared with mouse brain, showing substantial overlap, including protein modification, cell cycle, RNA splicing, nuclear transport, and vesicle-mediated transport. Moreover, the disease-associated processes shared between mouse blood and brain were highly comparable to those previously identified in human blood and brain. In addition, we identified HD blood-specific pathology, confirming previous findings for peripheral pathology in blood. Finally, we identified hub genes for HD-associated blood modules and proposed a strategy for gene selection for development of a disease progression monitoring panel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The datasets generated and analyzed during the current study are available in the GEO repository, GSE170998.

Code Availability

The code used for the analyses is available at Zenodo: https://zenodo.org/record/5806116.

Abbreviations

CNS:

central nervous system

CSF:

cerebrospinal fluid

CPA:

concept profile analysis

DE:

differentially expressed

DGE:

differential gene expression

FDR:

false discovery rate

GO-BP:

Gene Ontology biological process

HD:

Huntington’s disease

HTT:

Huntingtin

logCPM:

log counts per million

logFC:

log fold change

mHTT:

mutant HTT

NfL:

neurofilament light

PCA:

principal component analysis

T1:

blood time point 1

T2:

blood time point 2

WGCNA:

weighted gene co-expression network analysis

WT:

wild-type

References

  1. Nopoulos PC (2016) Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin Neurosci 18(1):91–98

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bano D, Zanetti F, Mende Y, Nicotera P (2011) Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2:e228. https://doi.org/10.1038/cddis.2011.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ (2015) Treating the whole body in Huntington’s disease. Lancet Neurol 14(11):1135–1142. https://doi.org/10.1016/S1474-4422(15)00177-5

    Article  PubMed  Google Scholar 

  4. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72 (6):971–983 https://doi.org/10.1016/0092-8674(93)90585-e

  5. Rodrigues FB, Wild EJ (2020) Huntington’s Disease Clinical Trials Corner: April 2020. J Huntingt Dis Preprint 1–13 https://doi.org/10.3233/JHD-200002

  6. Shannon KM, Fraint A (2015) Therapeutic advances in Huntington’s Disease. Mov Disord 30(11):1539–1546. https://doi.org/10.1002/mds.26331

    Article  PubMed  Google Scholar 

  7. Zeun P, Scahill RI, Tabrizi SJ, Wild EJ (2019) Fluid and imaging biomarkers for Huntington’s disease. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2019.02.004

    Article  PubMed  Google Scholar 

  8. Mina E, van Roon-Mom W, Hettne K, van Zwet E, Goeman J, Neri C, P ACTH, Mons B, Roos M (2016) Common disease signatures from gene expression analysis in Huntington’s disease human blood and brain. Orphanet J Rare Dis 11(1):97. https://doi.org/10.1186/s13023-016-0475-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zadel M, Maver A, Kovanda A, Peterlin B (2018) Transcriptomic biomarkers for Huntington’s Disease: are gene expression signatures in whole blood reliable biomarkers? Omics 22(4):283–294. https://doi.org/10.1089/omi.2017.0206

    Article  CAS  PubMed  Google Scholar 

  10. Cai C, Langfelder P, Fuller TF, Oldham MC, Luo R, van den Berg LH, Ophoff RA, Horvath S (2010) Is human blood a good surrogate for brain tissue in transcriptional studies? BMC Genomics 11:589. https://doi.org/10.1186/1471-2164-11-589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR, Hayden MR (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567

    Article  CAS  PubMed  Google Scholar 

  12. Toonen LJA, Overzier M, Evers MM, Leon LG, van der Zeeuw SAJ, Mei H, Kielbasa SM, Goeman JJ, Hettne KM, Magnusson OT, Poirel M, Seyer A, t Hoen PAC, van Roon-Mom WMC (2018) Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener 13(1):31https://doi.org/10.1186/s13024-018-0261-9

  13. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  14. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40(10):4288–4297. https://doi.org/10.1093/nar/gks042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hansen KD, Irizarry RA, Wu Z (2012) Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13(2):204–216. https://doi.org/10.1093/biostatistics/kxr054

    Article  PubMed  PubMed Central  Google Scholar 

  16. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300

    Google Scholar 

  17. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35 (Web Server issue):W71–74 https://doi.org/10.1093/nar/gkm306

  18. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  CAS  PubMed  Google Scholar 

  19. Benjamini Y, Krieger AM, Yekutieli D (2006) Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93(3):491–507. https://doi.org/10.1093/biomet/93.3.491

    Article  Google Scholar 

  20. Oldham MC, Langfelder P, Horvath S (2012) Network methods for describing sample relationships in genomic datasets: application to Huntington’s disease. BMC Syst Biol 6:63. https://doi.org/10.1186/1752-0509-6-63

    Article  PubMed  PubMed Central  Google Scholar 

  21. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langfelder P, Luo R, Oldham MC, Horvath S (2011) Is my network module preserved and reproducible? PLoS Comput Biol 7(1):e1001057. https://doi.org/10.1371/journal.pcbi.1001057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jelier R, Schuemie MJ, Roes PJ, van Mulligen EM, Kors JA (2008) Literature-based concept profiles for gene annotation: the issue of weighting. Int J Med Inform 77(5):354–362. https://doi.org/10.1016/j.ijmedinf.2007.07.004

    Article  PubMed  Google Scholar 

  24. Jelier R, Schuemie MJ, Veldhoven A, Dorssers LC, Jenster G, Kors JA (2008) Anni 2.0: a multipurpose text-mining tool for the life sciences. Genome Biol 9(6):R96 https://doi.org/10.1186/gb-2008-9-6-r96

  25. University P Generic GO Term Mapper. https://go.princeton.edu/cgi-bin/GOTermMapper. Accessed 10 Nov 2021

  26. VIB/UGent Calculate and draw custum Venn diagrams. http://bioinformatics.psb.ugent.be/webtools/Venn/. Accessed 3 Aug 2020

  27. Westfall PH, Young SS (1993) Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment. John Wiley, New York

    Google Scholar 

  28. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC (2017) Huntington's disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7 (7) https://doi.org/10.1101/cshperspect.a024240

  29. Skotte NH, Andersen JV, Santos A, Aldana BI, Willert CW, Nørremølle A, Waagepetersen HS, Nielsen ML (2018) Integrative characterization of the R6/2 mouse model of Huntington’s disease reveals dysfunctional astrocyte metabolism. Cell Rep 23(7):2211–2224. https://doi.org/10.1016/j.celrep.2018.04.052

    Article  CAS  PubMed  Google Scholar 

  30. Bayram-Weston Z, Stone TC, Giles P, Elliston L, Janghra N, Higgs GV, Holmans PA, Dunnett SB, Brooks SP, Jones L (2015) Similar striatal gene expression profiles in the striatum of the YAC128 and HdhQ150 mouse models of Huntington’s disease are not reflected in mutant Huntingtin inclusion prevalence. BMC Genomics 16(1):1079. https://doi.org/10.1186/s12864-015-2251-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teo RT, Hong X, Yu-Taeger L, Huang Y, Tan LJ, Xie Y, To XV, Guo L, Rajendran R, Novati A, Calaminus C, Riess O, Hayden MR, Nguyen HP, Chuang KH, Pouladi MA (2016) Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Hum Mol Genet 25(13):2621–2632. https://doi.org/10.1093/hmg/ddw122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilton DK, Stevens B (2020) The contribution of glial cells to Huntington’s disease pathogenesis. Neurobiol Dis 143:104963. https://doi.org/10.1016/j.nbd.2020.104963

    Article  PubMed  PubMed Central  Google Scholar 

  33. Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG (2021) The role of the cerebellum in Huntington’s disease: a systematic review. Cerebellum (London, England) 20(2):254–265. https://doi.org/10.1007/s12311-020-01198-4

    Article  Google Scholar 

  34. Valenza M, Carroll JB, Leoni V, Bertram LN, Bjorkhem I, Singaraja RR, Di Donato S, Lutjohann D, Hayden MR, Cattaneo E (2007) Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum Mol Genet 16(18):2187–2198. https://doi.org/10.1093/hmg/ddm170

    Article  CAS  PubMed  Google Scholar 

  35. Hensman Moss DJ, Flower MD, Lo KK, Miller JRC, van Ommen G-JB, ’t Hoen PAC, Stone TC, Guinee A, Langbehn DR, Jones L, Plagnol V, van Roon-Mom WMC, Holmans P, Tabrizi SJ (2017) Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease. Sci Rep 7:44849 https://doi.org/10.1038/srep44849. https://www.nature.com/articles/srep44849#supplementary-information

  36. Neueder A, Bates GP (2014) A common gene expression signature in Huntington’s disease patient brain regions. BMC Med Genomicshttps://doi.org/10.1186/s12920-014-0060-2

  37. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738. https://doi.org/10.4049/jimmunol.172.5.2731

    Article  CAS  PubMed  Google Scholar 

  38. Puorro G, Marsili A, Sapone F, Pane C, De Rosa A, Peluso S, De Michele G, Filla A, Sacca F (2018) Peripheral markers of autophagy in polyglutamine diseases. Neurol Sci 39(1):149–152. https://doi.org/10.1007/s10072-017-3156-6

    Article  PubMed  Google Scholar 

  39. Areal LB, Pereira LP, Ribeiro FM, Olmo IG, Muniz MR, do Carmo Rodrigues M, Costa PF, Martins-Silva C, Ferguson SSG, Guimaraes DAM, Pires RGW (2017) Role of dynein axonemal heavy chain 6 gene expression as a possible biomarker for Huntington’s disease: a translational study. J Mol Neurosci 63(3–4):342–348. https://doi.org/10.1007/s12031-017-0984-z

    Article  CAS  PubMed  Google Scholar 

  40. Castaldo I, De Rosa M, Romano A, Zuchegna C, Squitieri F, Mechelli R, Peluso S, Borrelli C, Del Mondo A, Salvatore E, Vescovi LA, Migliore S, De Michele G, Ristori G, Romano S, Avvedimento EV, Porcellini A (2018) DNA damage signatures in peripheral blood cells (PBMC) as biomarkers in prodromal Huntington’s disease. Ann Neurol. https://doi.org/10.1002/ana.25393

    Article  Google Scholar 

  41. Mastrokolias A, Ariyurek Y, Goeman JJ, van Duijn E, Roos RAC, van der Mast RC, van Ommen GB, den Dunnen JT, 't Hoen PAC, van Roon-Mom WMC (2015) Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. Eur J Hum Genet 23 (10):1349-1356https://doi.org/10.1038/ejhg.2014.281

  42. Andrade-Navarro MA, Muhlenberg K, Spruth EJ, Mah N, Gonzalez-Lopez A, Andreani T, Russ J, Huska MR, Muro EM, Fontaine JF, Amstislavskiy V, Soldatov A, Nietfeld W, Wanker EE, Priller J (2020) RNA sequencing of human peripheral blood cells indicates upregulation of immune-related genes in Huntington’s disease. Front Neurol 11:573560. https://doi.org/10.3389/fneur.2020.573560

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to thank Melvin M. Evers for his help in the design of the animal studies.

Funding

This work was partly funded by Campagne Team Huntington. Sequencing was funded by the European Union seventh Framework Program (FP7/2007-2013), grant agreement no. 305,121 (Neuromics).

Author information

Authors and Affiliations

Authors

Contributions

Wet lab experiments were performed by M. O., E. C. K., and L. J. A. T. Analysis of RNA sequencing was done by E. C. K. and E. M. R. T. gave advice on statistical analysis. Experiments were designed by L. J. A. T., M. R., W. v. R. M., E. M., and K. H. Interpretation of data by E. C. K., M. R., W. v. R. M., and E. M. Writing of the paper was done by E. C. K. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elsa C. Kuijper.

Ethics declarations

Ethics Approval

All animal experiments were licensed by the Central Committee for Animal experiments (CCD) in AVD1160020171069, valid from 1 September 2017 until 1 September 2022.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuijper, E.C., Toonen, L.J.A., Overzier, M. et al. Huntington Disease Gene Expression Signatures in Blood Compared to Brain of YAC128 Mice as Candidates for Monitoring of Pathology. Mol Neurobiol 59, 2532–2551 (2022). https://doi.org/10.1007/s12035-021-02680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02680-8

Keywords

Navigation