Skip to main content

Advertisement

Log in

Biochanin A Sensitizes Glioblastoma to Temozolomide by Inhibiting Autophagy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Resistance to temozolomide (TMZ) chemotherapy is the main reason for treatment failure in patients with glioblastoma (GBM). In the present study, we investigated biochanin A (BCA) a potent sensitizer of TMZ in GBM. We observed that BCA significantly enhanced cell sensitivity to TMZ in vitro and in vivo. Mechanistically, the specific chemosensitizing effect of BCA is mediated by autophagy inhibition. Moreover, by performing a molecular docking analysis, we demonstrated that BCA interacts with AMPK residues and impairs autophagy by regulating the AMPK/ULK1 pathway. These results suggest that BCA is a potential therapeutic agent that sensitizes GBM to TMZ and provide new insight into its therapeutic potential in chemoresistant GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. Requests for material should be made to the corresponding authors.

References

  1. Minniti G, Sanctis VD, Muni R, Filippone F, Bozzao A, Valeriani M, Osti MF, Paula UD, Lanzetta G, Tombolini V (2008) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma in elderly patients. J Neurooncol 88(1):97–103. https://doi.org/10.1007/s11060-008-9538-0

    Article  CAS  PubMed  Google Scholar 

  2. Ma W, Jin H, Liu W, Li X, Zhou X, Guo X, Tian R, Cui Q, Luo J, Jiao Y, Yu Y, Yang H, Zhao H (2020) Homeobox B8 targets sterile alpha motif domain-containing protein 9 and drives glioma progression. Neurosci Bull 36(4):359–371. https://doi.org/10.1007/s12264-019-00436-y

    Article  CAS  PubMed  Google Scholar 

  3. Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z (2016) Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 35(1):1–14. https://doi.org/10.1186/s13046-016-0303-5

    Article  CAS  Google Scholar 

  4. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN (2018) Opposite interplay between the canonical WNT/β-catenin pathway and PPAR gamma: a potential therapeutic target in gliomas. Neurosci Bull 34(3):573–588. https://doi.org/10.1007/s12264-018-0219-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hegi EM (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10(6):1871–1874. https://doi.org/10.1158/1078-0432.ccr-03-0384

    Article  CAS  PubMed  Google Scholar 

  6. Yuan G, Niu L, Zhang Y, Wang X, Ma K, Yin H, Dai J, Zhou W, Pan Y (2017) Defining optimal cutoff value of MGMT promoter methylation by ROC analysis for clinical setting in glioblastoma patients. J Neurooncol 133(1):193–201. https://doi.org/10.1007/s11060-017-2433-9

    Article  CAS  PubMed  Google Scholar 

  7. Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, Zhang G, Gu J, Kang D (2020) Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett 479(1):12. https://doi.org/10.1016/j.canlet.2020.03.002

    Article  CAS  Google Scholar 

  8. Lee CAA, Banerjee P, Wilson BJ, Wu S, Frank NY (2020) Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem 295(22):7774–7788. https://doi.org/10.1074/jbc.RA120.013778

  9. Harder BG, Peng S, Sereduk CP, Sodoma AM, Kitange GJ, Loftus JC, Sarkaria JN, Tran NL (2019) Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med 25 (1):49. https://doi.org/10.1186/s10020-019-0116-z

  10. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, Mikkelson T, Wang D, Chang YC, Hu J, McAfee Q, Fisher J, Troxel AB, Piao S, Heitjan DF, Tan KS, Pontiggia L, O'Dwyer PJ, Davis LE, Amaravadi RK (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme . Autophagy 10(8):1359–1368. https://doi.org/10.4161/auto.28984

  11. Oh JS, Cho IA, Kang KR, You JS, Yu SJ, Lee GJ, Seo YS, Kim CS, Kim DK, Kim SG, Seo YW, Im HJ, Kim JS (2016) Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes.%A Oh JS. Biochem Biophys Res Commun 477 (4):723–730. https://doi.org/10.1016/j.bbrc.2016.06.126

  12. Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB (2013) Multimechanistic antifibrotic effect of biochanin a in rats: implications of proinflammatory and profibrogenic mediators. PLoS ONE 8(7):e69276. https://doi.org/10.1371/journal.pone.0069276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Danciu C, Avram S, Pavel I, Ghiulai R, Dehelean C, Ersilia A, Minda D, Petrescu C, Moaca E, Soica C (2017) Main isoflavones found in dietary sources as natural anti-inflammatory agents. Curr Drug Targets 19(7):841–853. https://doi.org/10.2174/1389450118666171109150731

    Article  CAS  Google Scholar 

  14. Wang-Yang W, Yang-Yang W, Huan H, Can H, Wei-Zu L, Hui-Li W, Han-Qing C, Yan-Yan Y (2015) Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells. Int J Mol Med 35(2):391–398. https://doi.org/10.3892/ijmm.2014.2020

    Article  CAS  Google Scholar 

  15. Abhay P, Reeta T, Kaushala Prasad M (2013) Biochanin a enhances the radiotoxicity in colon tumor cells in vitro. J Environ Pathol Toxicol Oncol 32(3):189–203. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2013007280

    Article  Google Scholar 

  16. Rice L, Samedi VG, Medrano TA, Sweeney CA, Baker HV, Stenstrom A, Furman J, Shiverick KT (2002) Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate 52(3):201–212. https://doi.org/10.1002/pros.10100

    Article  CAS  PubMed  Google Scholar 

  17. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017. https://doi.org/10.1038/ncomms4017

    Article  CAS  PubMed  Google Scholar 

  18. Yang MC, Loh JK, Li YY, Huang WS, Chou CH, Cheng JT, Wang YT, Lieu AS, Howng SL, Hong YR, Chou AK (2015) Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma. Int J Oncol 46(3):1304–16. https://doi.org/10.3892/ijo.2015.2838

  19. Li HC, Xia ZH, Chen YF, Yang F, Feng DX (2017) Cantharidin inhibits the growth of triple-negative breast cancer cells by suppressing autophagy and inducing apoptosis in vitro and in vivo. Cell Physiol Biochem International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology 43(5):1829–1840. https://doi.org/10.1159/000484069

    Article  CAS  Google Scholar 

  20. Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41. https://doi.org/10.1016/j.pharmthera.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  21. Anja A, Ingrid H, Heinz S, Peter H, Rodemann, Andreas M (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Can Res 68(5):1485–1494. https://doi.org/10.1158/0008-5472.CAN-07-0562

    Article  CAS  Google Scholar 

  22. Eileen W, Dipaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15(17):5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023

    Article  Google Scholar 

  23. Eliopoulos AG, Sophia H, Gorgoulis VG (2016) DNA damage response and autophagy: a meaningful partnership. Front Genet 21(7):204. https://doi.org/10.3389/fgene.2016.00204.eCollection2016

    Article  Google Scholar 

  24. Knizhnik AV, Roos WP, Teodora N, Steve Q, Karl-Heinz T, Markus C, Bernd K (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS ONE 8(1):e55665. https://doi.org/10.1371/journal.pone.0055665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hori YS, Ryusuke H, Yukinori A, Rio S, Masahiro W, Takeshi M, Toshiya S, Kengo S, Mitsuhisa M, Miki T (2015) Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neurooncol 122(1):11–20. https://doi.org/10.1007/s11060-014-1686-9

    Article  CAS  PubMed  Google Scholar 

  26. Vu HT, Kobayashi M, Hegazy AM, Tadokoro Y, Ueno M, Kasahara A, Takase Y, Nomura N, Peng H, Ito C (2018) Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Sci 122(1):11–20. https://doi.org/10.1007/s11060-014-1686-9

    Article  CAS  Google Scholar 

  27. Chia-Leng L, Chien-Min C, Yan-Zin C, Guang-Yaw L, Hui-Chih H, Tung-Ying H, Chih-Li L (2014) Pine (Pinus morrisonicola Hayata) needle extracts sensitize GBM8901 human glioblastoma cells to temozolomide by downregulating autophagy and O(6)-methylguanine-DNA methyltransferase expression. J Agric Food Chem 62(43):10458–10467. https://doi.org/10.1021/jf501234b

    Article  CAS  Google Scholar 

  28. Sarkar FH, Shreelekha A, Subhash P, Sudhir K, Yiwei L (2006) The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem 6(4):401–7. https://doi.org/10.2174/138955706776361439

    Article  CAS  PubMed  Google Scholar 

  29. Sehm T, Fan Z, Weiss R, Schwarz M, Engelhorn T, Hore N, Doerfler A, Buchfelder M, Eyüpoglu IY, Savaskan NE (2014) The impact of dietary isoflavonoids on malignant brain tumors. Cancer Med 3(4):865–877. https://doi.org/10.1002/cam4.265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Youssef MM, Mai FT, Badawy NN, Liu AW, Elahwany E, Khalifa AE, Zada S, Abdelnaim AB (2016) Novel combination of sorafenib and biochanin-A synergistically enhances the anti-proliferative and pro-apoptotic effects on hepatocellular carcinoma cells. Sci Rep 6(1):30717. https://doi.org/10.1038/srep30717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu YN, Shyu HW, Hu TW, Yeh JP, Lin YW, Lee LY, Yeh YT, Dai HY, Perng DS, Su SH (2018) Anti-proliferative activity of biochanin A in human osteosarcoma cells via mitochondrial-involved apoptosis. Food Chem Toxicol 112:194–204. https://doi.org/10.1016/j.fct.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  32. Lai X, Li Y, Gao M (2018) Biochanin A regulates the growth and migration of NSCLC through suppressing the VEGF/VEGFR2 signaling pathway. Oncol Res (undefined). https://doi.org/10.3727/096504018X15321979274728

  33. Yang MC, Loh JK, Li YY, Huang WS, Chou CH, Cheng JT, Wang YT, Lieu AS, Howng SL, Hong YR (2015) Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma. Int J Oncol 46(3):1304. https://doi.org/10.3892/ijo.2015.2838

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (81960541/82060455), the Natural Science Foundation of Gansu Province (/20JR10RA741/21JR7RA426/21JR7RA420), Key Lab of Neurology of Gansu Province (grant number 20JR10RA766), the Fundamental Research Funds for the Central University (lzujbky-2021-kb33), the Lanzhou Science and Technology Bureau Project (2021-RC-97), the Cuiying Science and Technology fund (CYXZ-01), Cuiying Graduate Supervisor Applicant Training Program (201803), and Special fund project for doctoral training (YJS-BD-13) of Lanzhou University Second Hospital.

Author information

Authors and Affiliations

Authors

Contributions

YW Pan, GQ Yuan, and DG Wang designed the experiments; Q Dong, LL Li, Q Li, and H Yin performed the experiments; XQ Wang, Y Liu, and Lei Duan helped to perform the experiments; Q Dong and Q Li analyzed the data; J Wang prepared the figures for the manuscript. Q Dong, GQ Yuan, and YW Pan wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Guoqiang Yuan or Yawen Pan.

Ethics declarations

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

BCA can increase the sensitivity of TMZ in vitro and in vivo.

BCA can inhibit the autophagy of GBM cells through AMPK/ULK1 signaling pathway.

BCA sensitizes glioblastoma cells to TMZ by inhibiting autophagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Wang, D., Li, L. et al. Biochanin A Sensitizes Glioblastoma to Temozolomide by Inhibiting Autophagy. Mol Neurobiol 59, 1262–1272 (2022). https://doi.org/10.1007/s12035-021-02674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02674-6

Keywords

Navigation