Skip to main content
Log in

Neuroplastic Changes in the Superior Colliculus and Hippocampus in Self-rewarding Paradigm: Importance of Visual Cues

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Coincident excitation via different sensory modalities encoding objects of positive salience is known to facilitate learning and memory. With a view to dissect the contribution of visual cues in inducing adaptive neural changes, we monitored the lever press activity of a rat conditioned to self-administer sweet food pellets in the presence/absence of light cues. Application of light cues facilitated learning and consolidation of long-term memory. The superior colliculus (SC) of rats trained on light cue showed increased neuronal activity, dendritic branching, and brain-derived neurotrophic factor (BDNF) protein and mRNA expression. Concomitantly, the hippocampus showed augmented neurogenesis as well as BDNF protein and mRNA expression. While intra-SC administration of U0126 (inhibitor of ERK 1/2 and long-term memory) impaired memory formation, lidocaine (local anaesthetic) hindered memory recall. The light cue–dependent sweet food pellet self-administration was coupled with increased efflux of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens shell (AcbSh). In conditioned rats, pharmacological inhibition of glutamatergic signalling in dentate gyrus (DG) reduced lever press activity, as well as DA and DOPAC secretion in the AcbSh. We suggest that the neuroplastic changes in the SC and hippocampus might represent memory engrams sculpted by visual cues encoding reward information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from the demarcated area (not to scale) in s and t (coordinates, bregma − 2.56 mm) (Paxinos and Watson, 1998). c, f, i, l, o and r show co-labeled cells with BrdU and NeuN antibodies and the insets (c’, f’, i’, l’, o’ and r’) show co-labeled cells at higher magnification respectively. The morphometric data were analysed using a one-way ANOVA followed by post hoc Bonferroni’s multiple comparison test and represented as mean ± SEM (n = 5/group) and power > 0.9. *p < 0.001 versus no reward + no light cue control; #p < 0.01, ##p < 0.001 versus no light cue control. Scale bar = 100 μm (ar), and 25 μm (all insets). D3V, dorsal third ventricle; DG, dentate gyrus; str. or, stratum oriens; str. pyr, stratum pyramidale; str. rad, stratum radiatum

Fig. 8

taken from the demarcated area (not to scale) in s and t (coordinates, bregma − 2.56 mm) (Paxinos and Watson, 1998). c, f, i, l, o and r show cells co-labeled with BrdU and NeuN antibodies, and the insets (c’, f’, i’, l’, o’ and r’) show co-labeled cells at higher magnification respectively. The morphometric data were analysed using a one-way ANOVA followed by post hoc Bonferroni’s multiple comparison test and represented as mean ± SEM (n = 5/group) and power > 0.9. *p < 0.001 versus no reward + no light cue control; #p < 0.001 versus no light cue control. Scale bar = 100 μm (ar) and 25 μm (all insets). D3V, dorsal third ventricle; GCL, granule cell layer; ML, molecular layer; str. or, stratum oriens; str. pyr, stratum pyramidale; str. rad, stratum radiatum; SGZ, subgranular zone

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Abbreviations

Acb:

Nucleus accumbens

AcbSh:

Nucleus accumbens shell

aCSF:

Artificial cerebrospinal fluid

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP:

Anterior posterior

AUC:

Area under the curve

BDNF:

Brain-derived neurotrophic factor

BrdU:

5-bromo-2-deoxyuridine

CREB:

cAMP response element-binding protein

DA:

Dopamine

DAB:

3,3′-Diaminobenzidine tetrahydrochloride

DG:

Dentate gyrus

DOPAC:

3,4-Dihydroxyphenylacetic acid

DpG:

Deep grey layer

DpWh:

Deep white layer

DV:

Dorsal ventral

Elk-1:

Erythroblast transformation specific like-1

ERK:

Extracellular signal-regulated kinase

FR1:

Fixed ratio 1

HPLC-ECD:

High-performance liquid chromatography with electrochemical detector

HRP:

Horseradish peroxidase

InG:

Intermediate grey layer

InWh:

Intermediate white layer

NMDA:

N-methyl-D-aspartic acid

ip:

Intraperitoneal

LTP:

Long-term potentiation

MEK:

Mitogen-activated protein kinase

ML:

Medial lateral

NeuN:

Neuronal nuclear protein

Op:

Optic layer

PBS:

Phosphate-buffered saline

PMSF:

Phenylmethylsulfonyl fluoride

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

RIPA:

Radioimmuno-precipitation assay

RT:

Retention time

SC:

Superior colliculus

SDS:

Sodium dodecyl sulphate

SuG:

Superficial grey layer

VTA:

Ventral tegmental area

Zo:

Zonal layer

References

  1. Grabowska MJ, Jeans R, Steeves J, van Swinderen B (2020) Oscillations in the central brain of Drosophila are phase locked to attended visual features. Proc Natl Acad Sci USA 117(47):29925–29936. https://doi.org/10.1073/pnas.2010749117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Day JJ, Wheeler RA, Roitman MF, Carelli RM (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur J Neurosci 23(5):1341–1351. https://doi.org/10.1111/j.1460-9568.2006.04654.x

    Article  PubMed  Google Scholar 

  3. Day JJ, Jones JL, Carelli RM (2011) Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur J Neurosci 33(2):308–321. https://doi.org/10.1111/j.1460-9568.2010.07531.x

    Article  PubMed  Google Scholar 

  4. West EA, Carelli RM (2016) Nucleus accumbens core and shell differentially encode reward-associated cues after reinforcer devaluation. J Neurosci 36(4):1128–1139. https://doi.org/10.1523/JNEUROSCI.2976-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ito S, Feldheim DA (2018) The mouse superior colliculus: an emerging model for studying circuit formation and function. Front Neural Circuits 12:10. https://doi.org/10.3389/fncir.2018.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basso MA, May PJ (2017) Circuits for action and cognition: a view from the superior colliculus. Annu Rev Vis Sci 3:197–226. https://doi.org/10.1146/annurev-vision-102016-061234

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yu L, Stein BE, Rowland BA (2009) Adult plasticity in multisensory neurons: short-term experience-dependent changes in the superior colliculus. J Neurosci 29(50):15910–15922. https://doi.org/10.1523/JNEUROSCI.4041-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu L, Xu J, Rowland BA, Stein BE (2016) Multisensory plasticity in superior colliculus neurons is mediated by association cortex. Cereb Cortex 26(3):1130–1137. https://doi.org/10.1093/cercor/bhu295

    Article  PubMed  Google Scholar 

  9. Lomber SG (2002) Learning to see the trees before the forest: reversible deactivation of the superior colliculus during learning of local and global visual features. Proc Natl Acad Sci USA 99(6):4049–4054. https://doi.org/10.1073/pnas.062551899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krauzlis RJ, Lovejoy LP, Zénon A (2013) Superior colliculus and visual spatial attention. Annu Rev Neurosci 36:165–182. https://doi.org/10.1146/annurev-neuro-062012-170249

    Article  CAS  PubMed  Google Scholar 

  11. Crapse TB, Lau H, Basso MA (2018) A role for the superior colliculus in decision criteria. Neuron 97(1):181–194. https://doi.org/10.1016/j.neuron.2017.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drager UC, Hubel DH (1975) Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input. Nature 253(5488):203–204. https://doi.org/10.1038/253203a0

    Article  CAS  PubMed  Google Scholar 

  13. Huerta MF, Harting JK (1983) Sublamination within the superficial gray layer of the squirrel monkey: an analysis of the tectopulvinar projection using anterograde and retrograde transport methods. Brain Res 261(1):119–126. https://doi.org/10.1016/0006-8993(83)91290-8

    Article  CAS  PubMed  Google Scholar 

  14. Hoy JL, Bishop HI, Niell CM (2019) Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr Biol 29(23):4130–4138. https://doi.org/10.1016/j.cub.2019.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Triplett JW, Owens MT, Yamada J, Lemke G, Cang J, Stryker MP, Feldheim DA (2009) Retinal input instructs alignment of visual topographic maps. Cell 139(1):175–185. https://doi.org/10.1016/j.cell.2009.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee AC, Yeung LK, Barense MD (2012) The hippocampus and visual perception. Front Hum Neurosci 6:91. https://doi.org/10.3389/fnhum.2012.00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ (2003) Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in Aplysia. Neuron 37(3):473–484. https://doi.org/10.1016/s0896-6273(03)00030-8

    Article  CAS  PubMed  Google Scholar 

  18. Bender BN, Torregrossa MM (2020) Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 77(19):3745–3768. https://doi.org/10.1007/s00018-020-03498-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stuber GD, Klanker M, de Ridder B, Bowers MS, Joosten RN, Feenstra MG, Bonci A (2008) Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321(5896):1690–1692. https://doi.org/10.1126/science.1160873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Upadhya MA, Nakhate KT, Kokare DM, Singh U, Singru PS, Subhedar NK (2012) CART peptide in the nucleus accumbens shell acts downstream to dopamine and mediates the reward and reinforcement actions of morphine. Neuropharmacology 62(4):1823–1833. https://doi.org/10.1016/j.neuropharm.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  21. Sangha S, Scheibenstock A, Morrow R, Lukowiak K (2003) Extinction requires new RNA and protein synthesis and the soma of the cell right pedal dorsal 1 in Lymnaea stagnalis. J Neurosci 23(30):9842–9851. https://doi.org/10.1523/JNEUROSCI.23-30-09842.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Day JJ, Childs D, Guzman-Karlsson MC, Kibe M, Moulden J, Song E, Tahir A, Sweatt JD (2013) DNA methylation regulates associative reward learning. Nat Neurosci 16(10):1445–1452. https://doi.org/10.1038/nn.3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dandekar MP, Singru PS, Kokare DM, Subhedar NK (2009) Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology 34(5):1288–1300. https://doi.org/10.1038/npp.2008.201

    Article  CAS  PubMed  Google Scholar 

  24. Nakhate KT, Dandekar MP, Kokare DM, Subhedar NK (2009) Involvement of neuropeptide Y Y(1) receptors in the acute, chronic and withdrawal effects of nicotine on feeding and body weight in rats. Eur J Pharmacol 609(1–3):78–87. https://doi.org/10.1016/j.ejphar.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  25. Kokare DM, Shelkar GP, Borkar CD, Nakhate KT, Subhedar NK (2011) A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice. J Pharmacol Toxicol Methods 64(3):246–250. https://doi.org/10.1016/j.vascn.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, London. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  27. Deehan GAJr, Engleman EA, Ding ZM, McBride WJ, Rodd ZA (2013) Microinjections of acetaldehyde or salsolinol into the posterior ventral tegmental area increase dopamine release in the nucleus accumbens shell. Alcohol Clin Exp Res 37(5):722–729. https://doi.org/10.1111/acer.12034

    Article  CAS  PubMed  Google Scholar 

  28. Kelley JB, Anderson KL, Altmann SL, Itzhak Y (2011) Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein. Neuroscience 174:91–103. https://doi.org/10.1016/j.neuroscience.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Marshall-Phelps KLH, Riedel G, Wulff P, Woloszynowska-Fraser M (2020) Cerebellar molecular layer interneurons are dispensable for cued and contextual fear conditioning. Sci Rep 10(1):20000. https://doi.org/10.1038/s41598-020-76729-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong F, Liu L, Wei JL, Dai RP (2019) Step by step Golgi-cox staining for cryosection. Front Neuroanat 13:62. https://doi.org/10.3389/fnana.2019.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sagarkar S, Choudhary AG, Balasubramanian N, Awathale SN, Somalwar AR, Pawar N, Kokare DM, Subhedar NK, Sakharkar AJ (2021) LSD1-BDNF activity in lateral hypothalamus-medial forebrain bundle area is essential for reward seeking behavior. Prog Neurobiol 202:102048. https://doi.org/10.1016/j.pneurobio.2021.102048

    Article  CAS  PubMed  Google Scholar 

  32. Harvey AR, Warton SS (1986) The morphology of neurons in rat tectal transplants as revealed by Golgi-Cox impregnation. Anat Embryol (Berl) 174(3):361–367. https://doi.org/10.1007/BF00698786

    Article  CAS  Google Scholar 

  33. Kawade HM, Borkar CD, Shambharkar AS, Singh O, Singru PS, Subhedar NK, Kokare DM (2020) Intracellular mechanisms and behavioral changes in mouse model of attention deficit hyperactivity disorder: Importance of age-specific NMDA receptor blockade. Pharmacol Biochem Behav 188:172830. https://doi.org/10.1016/j.pbb.2019.172830

    Article  CAS  PubMed  Google Scholar 

  34. Sagarkar S, Bhamburkar T, Shelkar G, Choudhary A, Kokare DM, Sakharkar AJ (2017) Minimal traumatic brain injury causes persistent changes in DNA methylation at BDNF gene promoters in rat amygdala: a possible role in anxiety-like behaviors. Neurobiol Dis 106:101–109. https://doi.org/10.1016/j.nbd.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  36. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435(4):406–417. https://doi.org/10.1002/cne.1040

    Article  CAS  PubMed  Google Scholar 

  37. Bekiari C, Giannakopoulou A, Siskos N, Grivas I, Tsingotjidou A, Michaloudi H, Papadopoulos GC (2015) Neurogenesis in the septal and temporal part of the adult rat dentate gyrus. Hippocampus 25(4):511–523. https://doi.org/10.1002/hipo.22388

    Article  CAS  PubMed  Google Scholar 

  38. Awathale SN, Dudhbhate BB, Rahangdale RR, Borkar CD, Subhedar NK, Kokare DM (2020) Denial of food to the hungry rat: a novel paradigm for induction and evaluation of anger-like emotion. J Neurosci Methods 341:108791. https://doi.org/10.1016/j.jneumeth.2020.108791

    Article  CAS  PubMed  Google Scholar 

  39. Bharne AP, Borkar CD, Bodakuntla S, Lahiri M, Subhedar NK, Kokare DM (2016) Pro-cognitive action of CART is mediated via ERK in the hippocampus. Hippocampus 26(10):1313–1327. https://doi.org/10.1002/hipo.22608

    Article  CAS  PubMed  Google Scholar 

  40. Wojtowicz JM, Kee N (2006) BrdU assay for neurogenesis in rodents. Nat Protoc 1(3):1399–1405. https://doi.org/10.1038/nprot.2006.224

    Article  CAS  PubMed  Google Scholar 

  41. Velazco-Cercas E, Beltran-Parrazal L, Morgado-Valle C, Lopez-Meraz ML (2020) Status epilepticus increases cell proliferation and neurogenesis in the developing rat cerebellum. Cerebellum 19(1):48–57. https://doi.org/10.1007/s12311-019-01078-6

    Article  CAS  PubMed  Google Scholar 

  42. Harte M, O’Connor WT (2005) Evidence for a selective prefrontal cortical GABA(B) receptor-mediated inhibition of glutamate release in the ventral tegmental area: a dual probe microdialysis study in the awake rat. Neuroscience 130(1):215–222. https://doi.org/10.1016/j.neuroscience.2004.08.045

    Article  CAS  PubMed  Google Scholar 

  43. Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82(4):1103–1114. https://doi.org/10.1016/s0306-4522(97)00366-7

    Article  CAS  PubMed  Google Scholar 

  44. Yang SC, Pan JT, Li HY (2004) CART peptide increases the mesolimbic dopaminergic neuronal activity: a microdialysis study. Eur J Pharmacol 494(2–3):179–182. https://doi.org/10.1016/j.ejphar.2004.05.018

    Article  CAS  PubMed  Google Scholar 

  45. Shahidani S, Reisi P, Naghdi N, Alaei H, Ramshini E (2012) Lesion of medial prefrontal cortex reduces morphine-induced extracellular dopamine level in the ventral tegmental area: a microdialysis study in rats. Pharmacol Biochem Behav 102(1):77–81. https://doi.org/10.1016/j.pbb.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  46. Awathale SN, Choudhary AG, Subhedar NK, Kokare DM (2021) Neuropeptide CART modulates dopamine turnover in the nucleus accumbens: insights into the anatomy of rewarding circuits. J Neurochem 158(5):1172–1185. https://doi.org/10.1111/jnc.15479

    Article  CAS  PubMed  Google Scholar 

  47. Ramkumar K, Srikumar BN, Venkatasubramanian D, Siva R, Shankaranarayana Rao BS, Raju TR (2012) Reversal of stress-induced dendritic atrophy in the prefrontal cortex by intracranial self-stimulation. J Neural Transm (Vienna) 119(5):533–543. https://doi.org/10.1007/s00702-011-0740-4

    Article  CAS  Google Scholar 

  48. Bowman RE, Hagedorn J, Madden E, Frankfurt M (2019) Effects of adolescent bisphenol-A exposure on memory and spine density in ovariectomized female rats: adolescence vs adulthood. Horm Behav 107:26–34. https://doi.org/10.1016/j.yhbeh.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  49. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Acosta-Pena E, Camacho-Abrego I, Melgarejo-Gutierrez M, Flores G, Drucker-Colin R, Garcia-Garcia F (2015) Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 69(1):15–25. https://doi.org/10.1002/syn.21779

    Article  CAS  PubMed  Google Scholar 

  51. Haller J, Toth M, Halasz J, De Boer SF (2006) Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. Physiol Behav 88(1–2):173–182. https://doi.org/10.1016/j.physbeh.2006.03.030

    Article  CAS  PubMed  Google Scholar 

  52. Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP, Yao S (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545(7655):477–481. https://doi.org/10.1038/nature22350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bharne AP, Borkar CD, Subhedar NK, Kokare DM (2015) Differential expression of CART in feeding and reward circuits in binge eating rat model. Behav Brain Res 291:219–231. https://doi.org/10.1016/j.bbr.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  54. Borkar CD, Bharne AP, Nagalakshmi B, Sakharkar AJ, Subhedar NK, Kokare DM (2018) Cocaine- and amphetamine-regulated transcript peptide (CART) alleviates MK-801-induced schizophrenic dementia-like symptoms. Neuroscience 375:94–107. https://doi.org/10.1016/j.neuroscience.2018.01.056

    Article  CAS  PubMed  Google Scholar 

  55. Labriola AR, Laemle LK (1977) Cellular morphology in the visual layer of the developing rat superior colliculus. Exp Neurol 55(1):247–268. https://doi.org/10.1016/0014-4886(77)90174-1

    Article  CAS  PubMed  Google Scholar 

  56. Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, Overton PG, Redgrave P (2003) A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci 6(9):974–980. https://doi.org/10.1038/nn1113

    Article  CAS  PubMed  Google Scholar 

  57. Crombag HS, Sutton JM, Takamiya K, Lee HK, Holland PC, Gallagher M, Huganir RL (2008) A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behav Brain Res 191(2):178–183. https://doi.org/10.1016/j.bbr.2008.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matell MS, Della Valle RB (2017) Temporal specificity in Pavlovian-to-instrumental transfer. Learn Mem 25(1):8–20. https://doi.org/10.1101/lm.046383.117

    Article  PubMed  Google Scholar 

  59. Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469(7328):53–57. https://doi.org/10.1038/nature09588

    Article  CAS  PubMed  Google Scholar 

  60. Maiya R, Mangieri RA, Morrisett RA, Heberlein U, Messing RO (2015) A selective role for Lmo4 in cue-reward learning. J Neurosci 35(26):9638–9647. https://doi.org/10.1523/JNEUROSCI.1740-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schleyer M, Fendt M, Schuller S, Gerber B (2018) Associative learning of stimuli paired and unpaired with reinforcement: evaluating evidence from maggots, flies, bees, and rats. Front Psychol 9:1494. https://doi.org/10.3389/fpsyg.2018.01494

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rodd ZA, Bell RL, Sable HJ, Murphy JM, McBride WJ (2004) Recent advances in animal models of alcohol craving and relapse. Pharmacol Biochem Behav 79(3):439–450. https://doi.org/10.1016/j.pbb.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  63. Shelkar GP, Kale AD, Singh U, Singru PS, Subhedar NK, Kokare DM (2015) Alpha-melanocyte stimulating hormone modulates ethanol self-administration in posterior ventral tegmental area through melanocortin-4 receptors. Addict Biol 20(2):302–315. https://doi.org/10.1111/adb.12126

    Article  CAS  PubMed  Google Scholar 

  64. Ramkumar K, Srikumar BN, Shankaranarayana Rao BS, Raju TR (2008) Self-stimulation rewarding experience restores stress-induced CA3 dendritic atrophy, spatial memory deficits and alterations in the levels of neurotransmitters in the hippocampus. Neurochem Res 33(9):1651–1662. https://doi.org/10.1007/s11064-007-9511-x

    Article  CAS  PubMed  Google Scholar 

  65. Verpelli C, Piccoli G, Zibetti C, Zanchi A, Gardoni F, Huang K, Brambilla D, Di Luca M, Battaglioli E, Sala C (2010) Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. J Neurosci 30(17):5830–5842. https://doi.org/10.1523/JNEUROSCI.0119-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 8:78. https://doi.org/10.3389/fnana.2014.00078

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA (2019) Nitric oxide donor prevents neonatal isoflurane-induced impairments in synaptic plasticity and memory. Anesthesiology 130(2):247–262. https://doi.org/10.1097/ALN.0000000000002529

    Article  CAS  PubMed  Google Scholar 

  68. Doubell TP, Skaliora I, Baron J, King AJ (2003) Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J Neurosci 23(16):6596–6607. https://doi.org/10.1523/JNEUROSCI.23-16-06596.2003

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38(3):579–593. https://doi.org/10.1007/s10571-017-0510-4

    Article  CAS  PubMed  Google Scholar 

  70. Tolwani RJ, Buckmaster PS, Varma S, Cosgaya JM, Wu Y, Suri C, Shooter EM (2002) BDNF overexpression increases dendrite complexity in hippocampal dentate gyrus. Neuroscience 114(3):795–805. https://doi.org/10.1016/s0306-4522(02)00301-9

    Article  CAS  PubMed  Google Scholar 

  71. Tongiorgi E (2008) Activity-dependent expression of brain-derived neurotrophic factor in dendrites: facts and open questions. Neurosci Res 61(4):335–346. https://doi.org/10.1016/j.neures.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  72. Medina JH, Viola H (2018) ERK1/2: a key cellular component for the formation, retrieval, reconsolidation and persistence of memory. Front Mol Neurosci 11:361. https://doi.org/10.3389/fnmol.2018.00361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci USA 105(7):2711–2716. https://doi.org/10.1073/pnas.0711863105

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ying SW, Futter M, Rosenblum K, Webber MJ, Hunt SP, Bliss TV, Bramham CR (2002) Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J Neurosci 22(5):1532–1540. https://doi.org/10.1523/JNEUROSCI.22-05-01532.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Herry C, Trifilieff P, Micheau J, Lüthi A, Mons N (2006) Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 24(1):261–269. https://doi.org/10.1111/j.1460-9568.2006.04893.x

    Article  PubMed  Google Scholar 

  76. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron 53(2):261–277. https://doi.org/10.1016/j.neuron.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  77. Day JJ (2008) Extracellular signal-related kinase activation during natural reward learning: a physiological role for phasic nucleus accumbens dopamine? J Neurosci 28(17):4295–4297. https://doi.org/10.1523/JNEUROSCI.0776-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shiflett MW, Brown RA, Balleine BW (2010) Acquisition and performance of goal-directed instrumental actions depends on ERK signaling in distinct regions of dorsal striatum in rats. J Neurosci 30(8):2951–2959. https://doi.org/10.1523/JNEUROSCI.1778-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faccidomo S, Salling MC, Galunas C, Hodge CW (2015) Operant ethanol self-administration increases extracellular-signal regulated protein kinase (ERK) phosphorylation in reward-related brain regions: selective regulation of positive reinforcement in the prefrontal cortex of C57BL/6J mice. Psychopharmacology 232(18):3417–3430. https://doi.org/10.1007/s00213-015-3993-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Silingardi D, Angelucci A, De Pasquale R, Borsotti M, Squitieri G, Brambilla R, Putignano E, Pizzorusso T, Berardi N (2011) ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex. Front Behav Neurosci 5:84. https://doi.org/10.3389/fnbeh.2011.00084

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wells AM, Arguello AA, Xie X, Blanton MA, Lasseter HC, Reittinger AM, Fuchs RA (2013) Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 38(5):753–762. https://doi.org/10.1038/npp.2012.238

    Article  CAS  PubMed  Google Scholar 

  82. Dupret D, Fabre A, Dobrossy MD, Panatier A, Rodriguez JJ, Lamarque S, Abrous DN (2007) Spatial learning depends on both the addition and removal of new hippocampal neurons. PLoS Biol 5(8):e214. https://doi.org/10.1371/journal.pbio.0050214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dupret D, Revest JM, Koehl M, Ichas F, De Giorgi F, Costet P, Piazza PV (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE 3(4):e1959. https://doi.org/10.1371/journal.pone.0001959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rapanelli M, Frick LR, Zanutto BS (2011) Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus. PLoS ONE 6(2):e14713. https://doi.org/10.1371/journal.pone.0014713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Balu DT, Hodes GE, Hill TE, Ho N, Rahman Z, Bender CN, Ring RH, Dwyer JM, Rosenzweig-Lipson S, Hughes ZA, Schechter LE, Lucki I (2009) Flow cytometric analysis of BrdU incorporation as a high-throughput method for measuring adult neurogenesis in the mouse. J Pharmacol Toxicol Methods 59(2):100–107. https://doi.org/10.1016/j.vascn.2008.12.002

    Article  CAS  PubMed  Google Scholar 

  86. Nguemeni C, McDonald MW, Jeffers MS, Livingston-Thomas J, Lagace D, Corbett D (2018) Short- and long-term exposure to low and high dose running produce differential effects on hippocampal neurogenesis. Neuroscience 369:202–211. https://doi.org/10.1016/j.neuroscience.2017.11.026

    Article  CAS  PubMed  Google Scholar 

  87. Foreman N, Stevens R (1987) Relationships between the superior colliculus and hippocampus: neural and behavioral considerations. Behavioral and Brain Sciences 10:101–152. https://doi.org/10.1017/s0140525x00056521

    Article  Google Scholar 

  88. Cooper BG, Miya DY, Mizumori SJ (1998) Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space. Hippocampus 8(4):340–372. https://doi.org/10.1002/(SICI)1098-1063(1998)8:4%3c340::AID-HIPO4%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  89. Prusky GT, Douglas RM, Nelson L, Shabanpoor A, Sutherland RJ (2004) Visual memory task for rats reveals an essential role for hippocampus and perirhinal cortex. Proc Natl Acad Sci USA 101(14):5064–5068. https://doi.org/10.1073/pnas.0308528101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Epp JR, Chow C, Galea LA (2013) Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci 7:57. https://doi.org/10.3389/fnins.2013.00057

    Article  PubMed  PubMed Central  Google Scholar 

  91. Canales JJ (2007) Adult neurogenesis and the memories of drug addiction. Eur Arch Psychiatry Clin Neurosci 257(5):261–270. https://doi.org/10.1007/s00406-007-0730-6

    Article  PubMed  Google Scholar 

  92. Bruel-Jungerman E, Rampon C, Laroche S (2007) Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 18(2):93–114. https://doi.org/10.1515/revneuro.2007.18.2.93

    Article  CAS  PubMed  Google Scholar 

  93. Hayashi K, Kubo K, Kitazawa A, Nakajima K (2015) Cellular dynamics of neuronal migration in the hippocampus. Front Neurosci 9:135. https://doi.org/10.3389/fnins.2015.00135

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yau SY, Li A, So KF (2015) Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plast 717958. https://doi.org/10.1155/2015/717958

  95. McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P (2005) Subcortical loops through the basal ganglia. Trends Neurosci 28(8):401–407. https://doi.org/10.1016/j.tins.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  96. Zhang GR, Zhao H, Choi EM, Svestka M, Wang X, Nagayach A, Singh A, Cook RG, Geller AI (2019) An identified ensemble within a neocortical circuit encodes essential information for genetically-enhanced visual shape learning. Hippocampus 29(8):710–725. https://doi.org/10.1002/hipo.23068

    Article  CAS  PubMed  Google Scholar 

  97. Yoshitake T, Yoshitake S, Fujino K, Nohta H, Yamaguchi M, Kehr J (2004) High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex. J Neurosci Methods 140(1–2):163–168. https://doi.org/10.1016/j.jneumeth.2004.04.041

    Article  CAS  PubMed  Google Scholar 

  98. Kersante F, Rowley SC, Pavlov I, Gutierrez-Mecinas M, Semyanov A, Reul JM, Walker MC, Linthorst AC (2013) A functional role for both -aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. J Physiol 591(10):2429–2441. https://doi.org/10.1113/jphysiol.2012.246298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Truchet B, Chaillan FA, Soumireu-Mourat B, Roman FS (2002) Learning and memory of cue-reward association meaning by modifications of synaptic efficacy in dentate gyrus and piriform cortex. Hippocampus 12(5):600–608. https://doi.org/10.1002/hipo.10097

    Article  CAS  PubMed  Google Scholar 

  100. Ben Mamou C, Gamache K, Nader K (2006) NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat Neurosci 9(10):1237–1239. https://doi.org/10.1038/nn1778

    Article  CAS  PubMed  Google Scholar 

  101. Bast T, da Silva BM, Morris RG (2005) Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J Neurosci 25(25):5845–5856. https://doi.org/10.1523/JNEUROSCI.0698-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Albensi BC (2007) The NMDA receptor/ion channel complex: a drug target for modulating synaptic plasticity and excitotoxicity. Curr Pharm Des 13(31):3185–3194. https://doi.org/10.2174/138161207782341321

    Article  CAS  PubMed  Google Scholar 

  103. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297(5579):211–218. https://doi.org/10.1126/science.1071795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McKay S, Bengtson CP, Bading H, Wyllie DJ, Hardingham GE (2013) Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure. Neuropharmacology 74:119–125. https://doi.org/10.1016/j.neuropharm.2013.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Day M, Langston R, Morris RG (2003) Glutamate-receptor-mediated encoding and retrieval of paired-associate learning. Nature 424(6945):205–209. https://doi.org/10.1038/nature01769

    Article  CAS  PubMed  Google Scholar 

  106. Xu LS, Yang LX, Hu WW, Yu X, Ma L, Liu LY, Wei EQ, Chen Z (2005) Histamine ameliorates spatial memory deficits induced by MK-801 infusion into ventral hippocampus as evaluated by radial maze task in rats. Acta Pharmacol Sin 26(12):1448–1453. https://doi.org/10.1111/j.1745-7254.2005.00229.x

    Article  CAS  PubMed  Google Scholar 

  107. Iwamura E, Yamada K, Ichitani Y (2016) Involvement of hippocampal NMDA receptors in retrieval of spontaneous object recognition memory in rats. Behav Brain Res 307:92–99. https://doi.org/10.1016/j.bbr.2016.03.048

    Article  CAS  PubMed  Google Scholar 

  108. Talpos JC, Aerts N, Fellini L, Steckler T (2014) A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol Biochem Behav 122:97–106. https://doi.org/10.1016/j.pbb.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  109. Zarrindast MR, Lashgari R, Rezayof A, Motamedi F, Nazari-Serenjeh F (2007) NMDA receptors of dorsal hippocampus are involved in the acquisition, but not in the expression of morphine-induced place preference. Eur J Pharmacol 568(1–3):192–198. https://doi.org/10.1016/j.ejphar.2007.04.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SNA acknowledges the Indian Council of Medical Research (ICMR) for providing senior research fellowship (45/06/2020/PHA/BMS).This work was supported by grants from the Science and Engineering Research Board (SERB) (CRG/2020/004971), Govt. of India, New Delhi, India.AJS acknowledges the funds received from SERB (GOI; EMR/2017/000621) and Council for Scientific and Industrial Research [(CSIR), GOI (37[1718]/18/EMR-II)]. We thank Yash Bhatt, 6025 Falling View Lane, Cumming, GA 30040, USA, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design, NKS, DMK, and SNA; behavioural, biochemical, and IHC data collection, SNA and AMW; protein and mRNA data collection, HMK, GJ, SS, and AJS; analysis and interpretation of results, SNA, AGC, NKS, AJS, and DMK; draft manuscript preparation, NKS, SNA, AGC, and DMK. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Dadasaheb M. Kokare.

Ethics declarations

Ethics Approval

Protocols employed in the present study were carried out in accordance with the Institutional Animal Ethics Committee, Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 469 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awathale, S.N., Waghade, A.M., Kawade, H.M. et al. Neuroplastic Changes in the Superior Colliculus and Hippocampus in Self-rewarding Paradigm: Importance of Visual Cues. Mol Neurobiol 59, 890–915 (2022). https://doi.org/10.1007/s12035-021-02597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02597-2

Keywords

Navigation