Skip to main content

Advertisement

Log in

Environmental Enrichment Rescues Oxidative Stress and Behavioral Impairments Induced by Maternal Care Deprivation: Sex- and Developmental-Dependent Differences

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress is related to major depressive disorder (MDD). This study investigated the action that early stress, represented by maternal deprivation (MD), has on the behavior and oxidative stress of Wistar female and male rats. Also, it was evaluated whether changes induced by MD could be reversed by environmental enrichment (EE). Male and female rats were divided into a non-MD and MD group. The MD group was subdivided into 3 groups: (1) assessed on the 31st day after exposure to EE for 10 days, (2) assessed on the 41st day after exposure to EE for 20 days, and (3) assessed on the 61st day after exposure to EE for 40 days. Behavioral tests were performed (memory habituation and elevated plus maze). Oxidative stress parameters were evaluated peripherally. MD was able to promote anxiety-like behavior at postnatal day (PND) 41 and impair memory at PND 31 and PND 61 in male and PND 41 and PND 61 in female rats. MD was associated with increased oxidative stress parameters (reactive species to thiobarbituric acid levels (TBARS), carbonylated proteins, nitrite/nitrate concentration), and altered antioxidant defenses (superoxide dismutase (SOD) and catalase (CAT), and sulfhydryl content) in different stages of development. The EE was able to reverse almost all behavioral and biochemical changes induced by MD; however, EE effects were sex and developmental period dependent. These findings reinforce the understanding of the gender variable as a biological factor in MDD related to MD and EE could be considered a treatment option for MDD treatment and its comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

This study is according to ethical concerns and it was approved by the ethics committee from UNESC under protocol number: 070/2018–1.

References

  1. Malhi GS, Mann JJ (2018) Depression Lancet 392:2299–2312. https://doi.org/10.1016/S0140-6736(18)31948-2

    Article  PubMed  Google Scholar 

  2. WHO (2020) Depression. https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 15 Apr 2020

  3. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Arlington, VA: American Psychiatric Association

  4. Sheehan DV, Nakagome K, Asami Y et al (2017) Restoring function in major depressive disorder: A systematic review. J Affect Disord 215:299–313

    Article  PubMed  Google Scholar 

  5. Colman I, Ataullahjan A (2010) Life course perspectives on the epidemiology of depression. Can J Psychiatry 55:622–632. https://doi.org/10.1177/070674371005501002

    Article  PubMed  Google Scholar 

  6. Burt DB, Zembar MJ, Niederehe G (1995) Depression and Memory Impairment: A Meta-Analysis of the Association, Its Pattern, and Specificity. Psychol Bull 117:285–305. https://doi.org/10.1037/0033-2909.117.2.285

    Article  PubMed  CAS  Google Scholar 

  7. Rock PL, Roiser JP, Riedel WJ, Blackwell AD (2014) Cognitive impairment in depression: A systematic review and meta-analysis. Psychol Med 44:2029–2040. https://doi.org/10.1017/S0033291713002535

    Article  PubMed  CAS  Google Scholar 

  8. Jacobson NC, Newman MG (2017) Anxiety and depression as bidirectional risk factors for one another: A meta-analysis of longitudinal studies. Psychol Bull 143:1155–1200. https://doi.org/10.1037/bul0000111

    Article  PubMed  Google Scholar 

  9. Kessler RC, Bromet EJ (2013) The epidemiology of depression across cultures. Annu Rev Public Health 34:119–138

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salk RH, Hyde JS, Abramson LY (2017) Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull 143:783–822. https://doi.org/10.1037/bul0000102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902. https://doi.org/10.1038/nature07455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jeon SW, Kim YK (2017) Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol 313:92–98. https://doi.org/10.1016/j.jneuroim.2017.10.016

    Article  PubMed  CAS  Google Scholar 

  13. Levy MJF, Boulle F, Steinbusch HW et al (2018) Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 235:2195–2220. https://doi.org/10.1007/s00213-018-4950-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Czarny P, Wigner P, Galecki P, Sliwinski T (2018) The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-Psychopharmacology Biol Psychiatry 80:309–321. https://doi.org/10.1016/j.pnpbp.2017.06.036

    Article  CAS  Google Scholar 

  15. Liu T, Zhong S, Liao X et al (2015) A meta-analysis of oxidative stress markers in depression. PLoS ONE 10:e0138904. https://doi.org/10.1371/journal.pone.0138904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Black CN, Bot M, Scheffer PG et al (2015) Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology 51:164–175. https://doi.org/10.1016/j.psyneuen.2014.09.025

    Article  PubMed  CAS  Google Scholar 

  17. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205. https://doi.org/10.1124/jpet.116.237503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shapero BG, Black SK, Liu RT et al (2014) Stressful Life Events and Depression Symptoms: The Effect of Childhood Emotional Abuse on Stress Reactivity. J Clin Psychol 70:209–223. https://doi.org/10.1002/jclp.22011

    Article  PubMed  Google Scholar 

  19. Łosiak W, Blaut A, Kłosowska J, Łosiak-Pilch J (2019) Stressful Life Events, Cognitive Biases, and Symptoms of Depression in Young Adults. Front Psychol 10:2165. https://doi.org/10.3389/fpsyg.2019.02165

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hovens JGFM, Giltay EJ, van Hemert AM, Penninx BWJH (2017) Emotional scars: impact of childhood trauma on the development of depressive and anxiety disorders later in life. Tijdschr Psychiatr 59:286–296

    PubMed  CAS  Google Scholar 

  21. Nikkheslat N, McLaughlin AP, Hastings C et al (2020) Childhood trauma, HPA axis activity and antidepressant response in patients with depression. Brain Behav Immun 87:229–237. https://doi.org/10.1016/j.bbi.2019.11.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nanni V, Uher R, Danese A (2012) Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: A meta-analysis. Am J Psychiatry 169:141–151. https://doi.org/10.1176/appi.ajp.2011.11020335

    Article  PubMed  Google Scholar 

  23. Réus GZ, Stringari RB, Ribeiro KF et al (2011) Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem Res 36:460–466. https://doi.org/10.1007/s11064-010-0364-3

    Article  PubMed  CAS  Google Scholar 

  24. El Khoury A, Gruber SHM, Mørk A, Mathé AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuro-Psychopharmacology Biol Psychiatry 30:535–540. https://doi.org/10.1016/j.pnpbp.2005.11.011

    Article  CAS  Google Scholar 

  25. Vetulani J (2013) Early maternal separation: A rodent model of depression and a prevailing human condition. Pharmacol Reports 65:1451–1461. https://doi.org/10.1016/S1734-1140(13)71505-6

    Article  Google Scholar 

  26. Lee JH, Kim HJ, Kim JG et al (2007) Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res 58:32–39. https://doi.org/10.1016/j.neures.2007.01.008

    Article  PubMed  CAS  Google Scholar 

  27. Sale A, Berardi N, Maffei L (2014) Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiol Rev 94:189–234. https://doi.org/10.1152/physrev.00036.2012

    Article  PubMed  CAS  Google Scholar 

  28. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of enviromental enrichment. Nat Rev Neurosci 1:191–198. https://doi.org/10.1038/35044558

    Article  PubMed  CAS  Google Scholar 

  29. Kempermann G (2019) Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20:235–245

    Article  PubMed  CAS  Google Scholar 

  30. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats-Behavioural and neurochemical aspects. Behav Brain Res 222:246–264. https://doi.org/10.1016/j.bbr.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  31. Shilpa BM, Bhagya V, Harish G et al (2017) Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Prog Neuro-Psychopharmacology Biol Psychiatry 76:88–100. https://doi.org/10.1016/j.pnpbp.2017.02.025

    Article  CAS  Google Scholar 

  32. Lehmann ML, Herkenham M (2011) Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway. J Neurosci 31:6159–6173. https://doi.org/10.1523/JNEUROSCI.0577-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ignácio ZM, Réus GZ, Abelaira HM et al (2017) Quetiapine treatment reverses depressive-like behavior and reduces DNA methyltransferase activity induced by maternal deprivation. Behav Brain Res 320:225–232. https://doi.org/10.1016/j.bbr.2016.11.044

    Article  PubMed  CAS  Google Scholar 

  34. Kosten TA, Lee HJ, Kim JJ (2007) Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain Res 1154:144–153. https://doi.org/10.1016/j.brainres.2007.03.081

    Article  PubMed  CAS  Google Scholar 

  35. Mello PB, Benetti F, Cammarota M, Izquierdo I (2009) Physical exercise can reverse the deficit in fear memory induced by maternal deprivation. Neurobiol Learn Mem 92:364–369. https://doi.org/10.1016/j.nlm.2009.04.004

    Article  PubMed  Google Scholar 

  36. Réus GZ, Fernandes GC, de Moura AB et al (2017) Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J Psychiatr Res 95:196–207. https://doi.org/10.1016/j.jpsychires.2017.08.020

    Article  PubMed  Google Scholar 

  37. Pereira LO, Arteni NS, Petersen RC et al (2007) Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 87:101–108. https://doi.org/10.1016/j.nlm.2006.07.003

    Article  PubMed  Google Scholar 

  38. Rojas JJ, Deniz BF, Miguel PM et al (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33. https://doi.org/10.1016/j.expneurol.2012.11.026

    Article  PubMed  Google Scholar 

  39. Barichello T, Fagundes GD, Generoso JS et al (2014) Environmental enrichment restores cognitive deficits induced by experimental childhood meningitis. Rev Bras Psiquiatr 36:322–329. https://doi.org/10.1590/1516-4446-2014-1443

    Article  PubMed  Google Scholar 

  40. Borba LA, Broseghini LDR, Manosso LM et al (2021) Environmental enrichment improves lifelong persistent behavioral and epigenetic changes induced by early-life stress. J Psychiatr Res 138:107–116. https://doi.org/10.1016/j.jpsychires.2021.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ohlsson AL, Johansson BB (1995) Environment influences functional outcome of cerebral infarction in rats. Stroke 26:644–649. https://doi.org/10.1161/01.STR.26.4.644

    Article  PubMed  CAS  Google Scholar 

  42. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709. https://doi.org/10.1038/nrn1970

    Article  PubMed  CAS  Google Scholar 

  43. Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 29:263–271. https://doi.org/10.1023/A:1021694307672

    Article  Google Scholar 

  44. Vianna MRM, Alonso M, Viola H et al (2000) Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. Learn Mem 7:333–340. https://doi.org/10.1101/lm.34600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gomes KM, Souza RP, Inácio CG et al (2011) Evaluation of light/dark cycle in anxiety- and depressive-like behaviors after regular treatment with methylphenidate hydrochloride in rats of different ages. Braz J Psychiatry 33:55–58. https://doi.org/10.1590/S1516-44462010005000018

    Article  PubMed  Google Scholar 

  46. Levine RL, Garland D, Oliver CN et al (1990) Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-H

    Article  PubMed  CAS  Google Scholar 

  47. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    Article  PubMed  CAS  Google Scholar 

  48. Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  PubMed  CAS  Google Scholar 

  49. Aebi H (1984) [13] Catalase in Vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  PubMed  CAS  Google Scholar 

  50. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312

    Article  PubMed  CAS  Google Scholar 

  51. Miragaia AS, de Oliveira Wertheimer GS, Consoli AC et al (2018) Maternal deprivation increases anxiety-and depressive-like behaviors in an age-dependent fashion and reduces neuropeptide y expression in the amygdala and hippocampus of male and female young adult rats. Front Behav Neurosci 12:159. https://doi.org/10.3389/fnbeh.2018.00159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302. https://doi.org/10.1016/S0031-9384(98)00300-X

    Article  PubMed  CAS  Google Scholar 

  53. Llorente-Berzal A, Fuentes S, Gagliano H et al (2011) Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour. Addict Biol 16:624–637. https://doi.org/10.1111/j.1369-1600.2011.00318.x

    Article  PubMed  CAS  Google Scholar 

  54. Andersen SL (2015) Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 27:477–491. https://doi.org/10.1017/S0954579415000103

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ahmad F, Salahuddin M, Alsamman K et al (2018) Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep 38(3):BSR20180118. https://doi.org/10.1042/BSR20180118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Janetsian-Fritz SS, Timme NM, McCane AM et al (2018) Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry 8:71. https://doi.org/10.1038/s41398-018-0119-5

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seong HH, Park JM, Kim YJ (2018) Antidepressive Effects of Environmental Enrichment in Chronic Stress-Induced Depression in Rats. Biol Res Nurs 20:40–48. https://doi.org/10.1177/1099800417730400

    Article  PubMed  Google Scholar 

  58. Koe AS, Ashokan A, Mitra R (2016) Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Transl Psychiatry 6:e729. https://doi.org/10.1038/tp.2015.217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Francis DD, Diorio J, Plotsky PM, Meaney MJ (2002) Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci 22:7840–7843. https://doi.org/10.1523/jneurosci.22-18-07840.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sampedro-Piquero P, Begega A (2016) Environmental Enrichment as a Positive Behavioral Intervention Across the Lifespan. Curr Neuropharmacol 15:459–470. https://doi.org/10.2174/1570159x14666160325115909

    Article  CAS  Google Scholar 

  61. Lin EJD, Choi E, Liu X et al (2011) Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6J mice. Behav Brain Res 216:349–357. https://doi.org/10.1016/j.bbr.2010.08.019

    Article  PubMed  Google Scholar 

  62. Chourbaji S, Hörtnagl H, Molteni R et al (2012) The impact of environmental enrichment on sex-specific neurochemical circuitries - Effects on brain-derived neurotrophic factor and the serotonergic system. Neuroscience 220:267–276. https://doi.org/10.1016/j.neuroscience.2012.06.016

    Article  PubMed  CAS  Google Scholar 

  63. Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  64. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed  CAS  Google Scholar 

  65. Birben E, Sahiner UM, Sackesen C et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Guevara I, Iwanejko J, Dembińska-Kieć A et al (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274:177–188. https://doi.org/10.1016/S0009-8981(98)00060-6

    Article  PubMed  CAS  Google Scholar 

  67. Frijhoff J, Winyard PG, Zarkovic N et al (2015) Clinical Relevance of Biomarkers of Oxidative Stress. Antioxidants Redox Signal 23:1144–1170

    Article  CAS  Google Scholar 

  68. Siwek M, Sowa-Kuaema M, Dudek D et al (2013) Oxidative stress markers in affective disorders. Pharmacol Reports 65:1558–1571. https://doi.org/10.1016/S1734-1140(13)71517-2

    Article  CAS  Google Scholar 

  69. Llorente R, Gallardo ML, Berzal AL et al (2009) Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells. Int J Dev Neurosci 27:233–241. https://doi.org/10.1016/j.ijdevneu.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  70. Burke NN, Llorente R, Marco EM et al (2013) Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury. J Pain 14:1173–1184. https://doi.org/10.1016/j.jpain.2013.05.003

    Article  PubMed  CAS  Google Scholar 

  71. Réus GZ, Carlessi AS, Titus SE et al (2015) A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Dev Neurobiol 75:1268–1281. https://doi.org/10.1002/dneu.22283

    Article  PubMed  CAS  Google Scholar 

  72. Maciel AL, Abelaira HM, de Moura AB et al (2018) Acute treatment with ketamine and chronic treatment with minocycline exert antidepressant-like effects and antioxidant properties in rats subjected different stressful events. Brain Res Bull 137:204–216. https://doi.org/10.1016/j.brainresbull.2017.12.005

    Article  PubMed  CAS  Google Scholar 

  73. Marković B, Radonjić NV, Jevtić G et al (2017) Long-term effects of maternal deprivation on redox regulation in rat brain: Involvement of NADPH oxidase. Oxid Med Cell Longev 2017:7390516. https://doi.org/10.1155/2017/7390516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Menezes J, Neves BH, Souza M, Mello-Carpes PB (2017) Green tea protects against memory deficits related to maternal deprivation. Physiol Behav 182:121–127. https://doi.org/10.1016/j.physbeh.2017.10.010

    Article  PubMed  CAS  Google Scholar 

  75. Neves BH, Menezes J, Souza MA, Mello-Carpes PB (2015) Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation. Physiol Behav 152:99–105. https://doi.org/10.1016/j.physbeh.2015.09.019

    Article  PubMed  CAS  Google Scholar 

  76. Lucca G, Comim CM, Valvassori SS et al (2009) Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43:864–869. https://doi.org/10.1016/j.jpsychires.2008.11.002

    Article  PubMed  Google Scholar 

  77. Kaufmann FN, Gazal M, Mondin TC et al (2015) Cognitive psychotherapy treatment decreases peripheral oxidative stress parameters associated with major depression disorder. Biol Psychol 110:175–181. https://doi.org/10.1016/j.biopsycho.2015.08.001

    Article  PubMed  Google Scholar 

  78. Mármol F, Rodríguez CA, Sánchez J, Chamizo VD (2015) Anti-oxidative effects produced by environmental enrichment in the hippocampus and cerebral cortex of male and female rats. Brain Res 1613:120–129. https://doi.org/10.1016/j.brainres.2015.04.007

    Article  PubMed  CAS  Google Scholar 

  79. Montes S, Yee-Rios Y, Páez-Martínez N (2019) Environmental enrichment restores oxidative balance in animals chronically exposed to toluene: Comparison with melatonin. Brain Res Bull 144:58–67. https://doi.org/10.1016/j.brainresbull.2018.11.007

    Article  PubMed  CAS  Google Scholar 

  80. Martín-Hernández D, Caso JR, Javier Meana J et al (2018) Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: Effect of antidepressants. J Neuroinflammation 15:1–12. https://doi.org/10.1186/s12974-018-1294-2

    Article  CAS  Google Scholar 

  81. Almeida Moreira Leal LK, Lima LA, Alexandre de Aquino PE et al (2020) Vitamin D (VD3) antioxidative and anti-inflammatory activities: Peripheral and central effects. Eur J Pharmacol 879:173099. https://doi.org/10.1016/j.ejphar.2020.173099

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Translational Psychiatry Program (USA) is funded by a grant from the National Institute of Health/National Institute of Mental Health (1R21MH117636-01A1, to JQ). Center of Excellence on Mood Disorders (USA) is funded by the Pat Rutherford Jr. Chair in Psychiatry, John S. Dunn Foundation and Anne and Don Fizer Foundation Endowment for Depression Research. Translational Psychiatry Laboratory (Brazil) is funded by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (GZR and JQ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (JQ and GZR), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) (GZR and JQ), Universidade do Extremo Sul Catarinense (JQ, and GZR), and Instituto Cérebro e Mente (JQ and GZR). JQ is a 1A and GZR is 2 CNPq Researches Fellow.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design and interpretation of the studies, analyzed the data, and reviewed manuscript; ABM performed maternal deprivation protocol. LAB, MEMB, ABM, ACD, JPD, and JPB performed EE protocol, behavioral tests, and the sample collection. LG, LJ, and FP performed the oxidative stress analysis. GZR, TAC, and COA performed statistical analysis. LMM, MSA, and GZR wrote the manuscript. JQ reviewed the manuscript. GZR did the design of experiment and reviewed the manuscript.

Corresponding author

Correspondence to Gislaine Z. Réus.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Réus, G.Z., Abitante, M.S., Manosso, L.M. et al. Environmental Enrichment Rescues Oxidative Stress and Behavioral Impairments Induced by Maternal Care Deprivation: Sex- and Developmental-Dependent Differences. Mol Neurobiol 60, 6757–6773 (2023). https://doi.org/10.1007/s12035-021-02588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02588-3

Keywords

Navigation