Skip to main content

Advertisement

Log in

Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the older adults. Although much effort has been made in the analyses of diagnostic biomarkers, such as amyloid-β, tau, and neurofilament light chain, identifying peripheral blood-based biomarkers is in extremely urgent need for their minimal invasiveness and more convenience. Here we characterized the miRNA profile by RNA sequencing in human serum exosomes from AD patients and healthy controls (HC) to investigate its potential for AD diagnosis. Subsequently, Gene Ontology analysis and pathway analysis were performed for the targeted genes from the differentially expressed miRNAs. These basic functions were differentially enriched, including cell adhesion, regulation of transcription, and the ubiquitin system. Functional network analysis highlighted the pathways of proteoglycans in cancer, viral carcinogenesis, signaling pathways regulating pluripotency of stem cells, and cellular senescence in AD. A total of 24 miRNAs showed significantly differential expression between AD and HC with more than ± 2.0-fold change at p value < 0.05 and at least 50 reads for each sample. Logistic regression analysis established a model for AD prediction by serum exosomal miR-30b-5p, miR-22-3p, and miR-378a-3p. Sequencing results were validated using quantitative reverse transcription PCR. The data showed that miR-30b-5p, miR-22-3p, and miR-378a-3p were significantly deregulated in AD, with area under the curve (AUC) of 0.668, 0.637, and 0.718, respectively. The combination of the three miRs gained a better diagnostic capability with AUC of 0.880. This finding revealed a miR panel as potential biomarker in the peripheral blood to distinguish AD from HC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All datasets generated or analyzed during the study are included in this published article and its supplementary information files.

References

  1. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, Shaw LM, Vemuri P et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Oxtoby NP, Young AL, Cash DM, Benzinger TLS, Fagan AM, Morris JC, Bateman RJ, Fox NC et al (2018) Data-driven models of dominantly-inherited Alzheimer’s disease progression. Brain 141:1529–1544

    PubMed  PubMed Central  Google Scholar 

  4. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W et al (2018) NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    PubMed  PubMed Central  Google Scholar 

  5. Schindler SE, Li Y, Todd KW, Herries EM, Henson RL, Gray JD, Wang G, Graham DL et al (2019) Emerging cerebrospinal fluid biomarkers in autosomal dominant Alzheimer’s disease. Alzheimers Dement 15:655–665

    PubMed  PubMed Central  Google Scholar 

  6. Bos I, Vos S, Verhey F, Scheltens P, Teunissen C, Engelborghs S, Sleegers K, Frisoni G et al (2019) Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer’s disease spectrum. Alzheimers Dement 15:644–654

    PubMed  Google Scholar 

  7. Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, Christensen J, McDade E et al (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol 17:241–250

    PubMed  PubMed Central  Google Scholar 

  8. Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, Hendrix J, Hillner BE et al (2019) Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA 321:1286–1294

    PubMed  PubMed Central  Google Scholar 

  9. Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, Graber S, Kuder-Buletta E et al (2019) Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med 25:277–283

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Park JC, Han SH, Yi D, Byun MS, Lee JH, Jang S, Ko K, Jeon SY et al (2019) Plasma tau/amyloid-beta1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain 142:771–786

    PubMed  Google Scholar 

  11. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Dore V, Fowler C, Li QX et al (2018) High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature 554:249–254

    CAS  PubMed  Google Scholar 

  12. Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, Airey DC, Knopman DS et al (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14:989–997

    PubMed  PubMed Central  Google Scholar 

  13. Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R et al (2018) Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 14:639–652

    PubMed  PubMed Central  Google Scholar 

  14. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20:21–37

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dehghani R, Rahmani F, Rezaei N (2018) MicroRNA in Alzheimer’s disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 29:161–182

    CAS  PubMed  Google Scholar 

  17. Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog Neurobiol 156:1–68

    CAS  PubMed  Google Scholar 

  18. Qian Q, Zhang J, He FP, Bao WX, Zheng TT, Zhou DM, Pan HY, Zhang H et al (2019) Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer’s disease. FASEB J 33:4404–4417

    CAS  PubMed  Google Scholar 

  19. Song Y, Hu M, Zhang J, Teng ZQ, Chen C (2019) A novel mechanism of synaptic and cognitive impairments mediated via microRNA-30b in Alzheimer’s disease. EBioMedicine 39:409–421

    PubMed  Google Scholar 

  20. Wang X, Liu D, Huang HZ, Wang ZH, Hou TY, Yang X, Pang P, Wei N et al (2018) A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biol Psychiatry 83:395–405

    CAS  PubMed  Google Scholar 

  21. Idda ML, Munk R, Abdelmohsen K, Gorospe M (2018) Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA 9:e1463. https://doi.org/10.1002/wrna.1463

    Article  CAS  Google Scholar 

  22. Wiedrick JT, Phillips JI, Lusardi TA, McFarland TJ, Lind B, Sandau US, Harrington CA, Lapidus JA et al (2019) Validation of microRNA biomarkers for Alzheimer’s disease in human cerebrospinal fluid. J Alzheimers Dis 67:875–891

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U (2019) microRNA diagnostic panel for Alzheimer’s disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 49:125–143

    CAS  PubMed  Google Scholar 

  24. Kumar S, Reddy PH (2018) MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: an update. Front Aging Neurosci 10:41

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo R, Fan G, Zhang J, Wu C, Du Y, Ye H, Li Z, Wang L et al (2017) A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimers Dis 60:1365–1377

    CAS  PubMed  Google Scholar 

  26. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J et al (2019) Reassessment of exosome composition. Cell 177(428-445):e18

    Google Scholar 

  27. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    PubMed  Google Scholar 

  28. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379:958–966

    CAS  PubMed  Google Scholar 

  29. Riancho J, Vazquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M, Calero M, Gonalezalez A et al (2017) MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis 57:483–491

    CAS  PubMed  Google Scholar 

  30. Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6:37043–37053

    PubMed  PubMed Central  Google Scholar 

  31. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC (2018) The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31:87–96

    PubMed  Google Scholar 

  32. Liu CG, Song J, Zhang YQ, Wang PC (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10:2395–2400

    CAS  PubMed  Google Scholar 

  33. Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, Smalheiser NR (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One 10:e0139233

    PubMed  PubMed Central  Google Scholar 

  34. Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC et al (2015) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20:1188–1196

    CAS  PubMed  Google Scholar 

  35. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269

    PubMed  PubMed Central  Google Scholar 

  36. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  37. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14:128

    PubMed  PubMed Central  Google Scholar 

  38. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697

    CAS  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  40. Cheng L, Sharples RA, Scicluna BJ, Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 26:eCollection

    Google Scholar 

  41. Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z (2018) Analysis of microRNA and gene expression profiles in Alzheimer’s disease: a meta-analysis approach. Sci Rep 8:4767

    PubMed  PubMed Central  Google Scholar 

  42. Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X, Song H, Chen Z (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120:190–198

    CAS  PubMed  Google Scholar 

  43. Ahmad K, Baig MH, Mushtaq G, Kamal MA, Greig NH, Choi I (2017) Commonalities in biological pathways, genetics, and cellular mechanism between Alzheimer disease and other neurodegenerative diseases: an in silico-updated overview. Curr Alzheimer Res 14:1190–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendes-Silva AP, Pereira KS, Tolentino-Araujo GT, Nicolau Ede S, Silva-Ferreira CM, Teixeira AL, Diniz BS (2016) Shared biologic pathways between Alzheimer disease and major depression: a systematic review of microRNA expression studies. Am J Geriatr Psychiatry 24:903–912

    PubMed  Google Scholar 

  45. Tramutola A, Triani F, Di Domenico F, Barone E, Cai J, Klein JB, Perluigi M, Butterfield DA (2018) Poly-ubiquitin profile in Alzheimer disease brain. Neurobiol Dis 118:129–141

    CAS  PubMed  Google Scholar 

  46. Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA (2016) It is all about (U)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxidative Med Cell Longev 2016:2756068

    Google Scholar 

  47. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181:1426–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, Ho HS, Keh HW et al (2019) Emerging pathways to neurodegeneration: dissecting the critical molecular mechanisms in Alzheimer’s disease, Parkinson’s disease. Biomed Pharmacother 111:765–777

    CAS  PubMed  Google Scholar 

  49. Barrera-Ocampo A, Arlt S, Matschke J, Hartmann U, Puig B, Ferrer I, Zurbig P, Glatzel M et al (2016) Amyloid-beta precursor protein modulates the sorting of Testican-1 and contributes to its accumulation in brain tissue and cerebrospinal fluid from patients with Alzheimer disease. J Neuropathol Exp Neurol 75:903–916

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C et al (2016) Microbes and Alzheimer’s disease. J Alzheimers Dis 51:979–984

    PubMed  PubMed Central  Google Scholar 

  51. Wozniak MA, Mee AP, Itzhaki RF (2009) Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 217:131–138

    CAS  PubMed  Google Scholar 

  52. Waldau B, Shetty AK (2008) Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 65:2372–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA (2019) Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in Alzheimer disease. Ann Neurol 85:726–739

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei H, Xu Y, Xu W, Zhou Q, Chen Q, Yang M, Feng F, Liu Y et al (2018) Serum exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia. Neuroscience 379:167–176

    CAS  PubMed  Google Scholar 

  55. Li H, Dai S, Zhen T, Shi H, Zhang F, Yang Y, Kang L, Liang Y et al (2014) Clinical and biological significance of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer 50:1207–1221

    CAS  PubMed  Google Scholar 

  56. Pellatt DF, Stevens JR, Wolff RK, Mullany LE, Herrick JS, Samowitz W, Slattery ML (2016) Expression profiles of miRNA subsets distinguish human colorectal carcinoma and normal colonic mucosa. Clin Transl Gastroenterol 7:e152

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Megiorni F, Cialfi S, McDowell HP, Felsani A, Camero S, Guffanti A, Pizer B, Clerico A et al (2014) Deep Sequencing the microRNA profile in rhabdomyosarcoma reveals down-regulation of miR-378 family members. BMC Cancer 14:880

    PubMed  PubMed Central  Google Scholar 

  58. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, Scheffner M, Hoppe-Seyler K et al (2015) Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathog 11:e1004712

    PubMed  PubMed Central  Google Scholar 

  59. Banerjee S, Karunagaran D (2019) An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 712:143961

    CAS  PubMed  Google Scholar 

  60. Ikeda K, Horie-Inoue K, Ueno T, Suzuki T, Sato W, Shigekawa T, Osaki A, Saeki T et al (2015) miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep 5:13170

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Arvidsson Y, Rehammar A, Bergstrom A, Andersson E, Altiparmak G, Sward C, Wangberg B, Kristiansson E et al (2018) miRNA profiling of small intestinal neuroendocrine tumors defines novel molecular subtypes and identifies miR-375 as a biomarker of patient survival. Mod Pathol 31:1302–1317

    CAS  PubMed  Google Scholar 

  62. Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O (2018) Discriminatory miRNAs for the management of papillary thyroid carcinoma and noninvasive follicular thyroid neoplasms with papillary-like nuclear features. Thyroid 28:319–327

    CAS  PubMed  Google Scholar 

  63. Velazquez-Torres G, Shoshan E, Ivan C, Huang L, Fuentes-Mattei E, Paret H, Kim SJ, Rodriguez-Aguayo C et al (2018) A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun 9:461

    PubMed  PubMed Central  Google Scholar 

  64. Wang M, Sun X, Yang Y, Jiao W (2018) Long non-coding RNA OIP5-AS1 promotes proliferation of lung cancer cells and leads to poor prognosis by targeting miR-378a-3p. Thorac Cancer 9:939–949

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Zhang X, Wang Z, Hu Q, Wu J, Li Y, Ren X, Wu T et al (2018) LncRNA-p23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis. Cancer Lett 434:172–183

    CAS  PubMed  Google Scholar 

  66. Xu ZH, Yao TZ, Liu W (2018) miR-378a-3p sensitizes ovarian cancer cells to cisplatin through targeting MAPK1/GRB2. Biomed Pharmacother 107:1410–1417

    CAS  PubMed  Google Scholar 

  67. Zhu P, Ge N, Liu D, Yang F, Zhang K, Guo J, Liu X, Wang S et al (2018) Preliminary investigation of the function of hsa_circ_0006215 in pancreatic cancer. Oncol Lett 16:603–611

    PubMed  PubMed Central  Google Scholar 

  68. Chen CL, Lin CH, Li AL, Huang CC, Shen BY, Chiang YR, Fang PL, Chang HC et al (2019) Plasma miRNA profile is a biomarker associated with urothelial carcinoma in chronic hemodialysis patients. Am J Physiol Ren Physiol 316:F1094–F1102

    CAS  Google Scholar 

  69. Fu W, Hong Z, You X, Din J, Chen B, Zhao B, Yuan G, Li Q (2019) Enhancement of anticancer activity of docetaxel by combination with Fuzheng Yiliu decoction in a mouse model of castration-resistant prostate cancer. Biomed Pharmacother 118:109374

    CAS  PubMed  Google Scholar 

  70. Yang J, Zhang Y, Song H (2019) A disparate role of RP11-424C20.2/UHRF1 axis through control of tumor immune escape in liver hepatocellular carcinoma and thymoma. Aging (Albany NY) 11:6422–6439

    CAS  Google Scholar 

  71. Cui Y, Xie M, Zhang Z (2020) LINC00958 involves in bladder cancer through sponging miR-378a-3p to elevate IGF1R. Cancer Biother Radiopharm 35:776–788. https://doi.org/10.1089/cbr.2019.3300

    Article  CAS  PubMed  Google Scholar 

  72. Zhang C, Wu S (2020) microRNA -378a-3p restrains the proliferation of retinoblastoma cells but promotes apoptosis of retinoblastoma cells via inhibition of FOXG1. Invest Ophthalmol Vis Sci 61:31

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi MC, Meola G, Martelli F (2012) Deregulated microRNAs in myotonic dystrophy type 2. PLoS One 7:e39732

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Siracusa J, Koulmann N, Bourdon S, Goriot ME, Banzet S (2016) Circulating miRNAs as biomarkers of acute muscle damage in rats. Am J Pathol 186:1313–1327

    CAS  PubMed  Google Scholar 

  75. Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, Lan X, Plath M et al (2017) Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis 8:e3153

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wei X, Li H, Zhang B, Li C, Dong D, Lan X, Huang Y, Bai Y et al (2016) miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol 13:1300–1309

    PubMed  PubMed Central  Google Scholar 

  77. Florian A, Patrascu A, Tremmel R, Rosch S, Sechtem U, Schwab M, Schaeffeler E, Yilmaz A (2018) Identification of cardiomyopathy-associated circulating miRNA biomarkers in muscular dystrophy female carriers using a complementary cardiac imaging and plasma profiling approach. Front Physiol 9:1770

    PubMed  PubMed Central  Google Scholar 

  78. Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, Qiu W, Xu N et al (2015) MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun 457:37–42

    CAS  PubMed  Google Scholar 

  79. Chen W, Zhao W, Yang A, Xu A, Wang H, Cong M, Liu T, Wang P et al (2017) Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Gene 636:87–95

    CAS  PubMed  Google Scholar 

  80. Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, Ha CS, Kim SW et al (2016) MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 7:10993

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Caserta S, Mengozzi M, Kern F, Newbury SF, Ghezzi P, Llewelyn MJ (2017) Severity of systemic inflammatory response syndrome affects the blood levels of circulating inflammatory-relevant microRNAs. Front Immunol 8:1977

    PubMed  Google Scholar 

  82. Dubois-Camacho K, Diaz-Jimenez D, De la Fuente M, Quera R, Simian D, Martinez M, Landskron G, Olivares-Morales M et al (2019) Inhibition of miR-378a-3p by inflammation enhances IL-33 levels: a novel mechanism of alarmin modulation in ulcerative colitis. Front Immunol 10:2449

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sud N, Zhang H, Pan K, Cheng X, Cui J, Su Q (2017) Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. J Nutr Biochem 43:125–131

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang T, Shi H, Liu N, Tian J, Zhao X, Steer CJ, Han Q, Song G (2020) Activation of microRNA-378a-3p biogenesis promotes hepatic secretion of VLDL and hyperlipidemia by modulating ApoB100-Sortilin1 axis. Theranostics 10:3952–3966

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Santangelo L, Bordoni V, Montaldo C, Cimini E, Zingoni A, Battistelli C, D’Offizi G, Capobianchi MR et al (2018) Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int 38:1741–1750

    CAS  PubMed  Google Scholar 

  86. Wang-Renault SF, Boudaoud S, Nocturne G, Roche E, Sigrist N, Daviaud C, Bugge Tinggaard A, Renault V et al (2018) Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjogren’s syndrome. Ann Rheum Dis 77:133–140

    CAS  PubMed  Google Scholar 

  87. Muller-Deile J, Dannenberg J, Schroder P, Lin MH, Miner JH, Chen R, Brasen JH, Thum T et al (2017) Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int 92:836–849

    PubMed  PubMed Central  Google Scholar 

  88. Chen T, Wang C, Yu H, Ding M, Zhang C, Lu X, Zhang CY (2019) Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine 39:552–561

    PubMed  Google Scholar 

  89. Krist B, Florczyk U, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of miR-378a in metabolism, angiogenesis, and muscle biology. Int J Endocrinol 2015:281756

    PubMed  PubMed Central  Google Scholar 

  90. Machado IF, Teodoro JS, Palmeira CM, Rolo AP (2020) miR-378a: a new emerging microRNA in metabolism. Cell Mol Life Sci 77:1947–1958

    CAS  PubMed  Google Scholar 

  91. Ramanan VK, Saykin AJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2:145–175

    PubMed  PubMed Central  Google Scholar 

  92. Ji Q, Wang X, Cai J, Du X, Sun H, Zhang N (2019) MiR-22-3p regulates amyloid beta deposit in mice model of Alzheimer’s disease by targeting mitogen-activated protein kinase 14. Curr Neurovasc Res 16(5):473–480

    CAS  PubMed  Google Scholar 

  93. Brennan S, Keon M, Liu B, Su Z, Saksena NK (2019) Panoramic visualization of circulating microRNAs across neurodegenerative diseases in humans. Mol Neurobiol 56(11):7380–7407

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all donors and their families for the blood samples provided in the study. Without their selfless contribution, the research could not have proceeded. Furthermore, the authors thank Dr. Shan Yan for his thoughtful discussion of the manuscript.

Funding

This work was supported by Science Foundation of Shanghai Municipal Commission of Science and Technology (19ZR1439300) and Project of Shanghai Municipal Health Commission (201640131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Dong.

Ethics declarations

Ethics Approval and Consent to Participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was obtained from the ethics committee of Jinshan Branch of Shanghai Sixth People’s Hospital. Informed consent was obtained from all individual participants and the legally authorized representatives of the AD patients included in the study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Mapping rate of the NGS generated reads mapped to the reference sequences for each sample. Prefix “A” indicates AD; Prefix “B” indicates HC. (PNG 210 kb)

High Resolution (TIF 94 kb)

Supplementary Table 1

All the relevant information of the detected miRNAs, including chromosome, start, end, strand, fold change, and p-value. Overall, 1957 miRNAs were detected in our study. A total of 207 miRNAs were differentially expressed in the AD compared with the HC (p-value < 0.05, and ± 1.2-fold change). (XLSX 570 kb)

Supplementary Table 2

Functional Gene Ontology (GO) analysis of genes that were targeted by these deregulated miRNAs. Biological process (BP), cellular component (CC), and molecular function (MF) terms were ranked by p-value (p-value < 0.05). (XLSX 1759 kb)

Supplementary Table 3

Functional pathway analysis of genes that were targeted by these deregulated miRNAs. The pathways were ranked by p-value (p-value < 0.05). (XLSX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Gu, H., Guo, Q. et al. Profiling of Serum Exosome MiRNA Reveals the Potential of a MiRNA Panel as Diagnostic Biomarker for Alzheimer’s Disease. Mol Neurobiol 58, 3084–3094 (2021). https://doi.org/10.1007/s12035-021-02323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02323-y

Keywords

Navigation