Skip to main content

Advertisement

Log in

Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer’s solution (2–4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary material.

Abbreviations

aiPLA2:

Ca2+-independent phospholipase A2

ARE:

Antioxidant response elements

cDNA:

Complementary DNA

DAPI:

4′,6-Diamidino-2-phenylindole

DC:

Dorsal column

FBS:

Fetal bovine serum

GFAP:

Glial fibrillary acidic protein

H and E:

Hematoxylin and eosin

IACUC:

Institutional Animal Care and Use Committee

KEAP1:

Kelch-like ECH-associated protein 1

MAP 2:

Microtubule-associated protein 2

MJ33:

1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium

NOX2:

NADPH oxidase 2

NF-200:

Neurofilament 200

Nrf2:

Nuclear factor erythroid 2–related factor 2

PBS-T:

Phosphate-buffered saline containing 0.1% Tween-20

Prdx6:

Peroxiredoxin-6

PVDF:

Polyvinylidene difluoride

qRT-PCR:

Quantitative real-time PCR

RIPA:

Radioimmunoprecipitation

ROS:

Reactive oxygen species

RT:

Room temperature

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SCI:

Spinal cord injury

TBI:

Traumatic brain injury

TLR4:

Toll-like receptor 4

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

UNMC:

University of Nebraska Medical Center

WC:

Whole spinal cord

References

  1. Eckert MJ, Martin MJ (2017) Trauma: spinal cord injury. Surg Clin North Am 97(5):1031–1045. https://doi.org/10.1016/j.suc.2017.06.008

    Article  PubMed  Google Scholar 

  2. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY, Li CJ (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46(4):1650–1667. https://doi.org/10.1159/000489241

    Article  CAS  PubMed  Google Scholar 

  3. Zhu P, Li JX, Fujino M, Zhuang J, Li XK (2013) Development and treatments of inflammatory cells and cytokines in spinal cord ischemia-reperfusion injury. Mediat Inflamm 2013:701970–701977. https://doi.org/10.1155/2013/701970

    Article  CAS  Google Scholar 

  4. Fan YD, Zhu ML, Geng D, Zhou K, Du GJ, Wang ZL (2018) The study on pathological mechanism and solution method for spinal cord ischemia reperfusion injury. Eur Rev Med Pharmacol Sci 22(13):4063–4068. https://doi.org/10.26355/eurrev_201807_15394

    Article  PubMed  Google Scholar 

  5. Zhu H, Santo A, Li Y (2012) The antioxidant enzyme peroxiredoxin and its protective role in neurological disorders. Exp Biol Med (Maywood) 237(2):143–149. https://doi.org/10.1258/ebm.2011.011152

    Article  CAS  Google Scholar 

  6. Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38(12):1543–1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  7. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K (2001) Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52(1–2):35–41. https://doi.org/10.1080/15216540252774748

    Article  CAS  PubMed  Google Scholar 

  8. Buonora JE, Mousseau M, Jacobowitz DM, Lazarus RC, Yarnell AM, Olsen CH, Pollard HB, Diaz-Arrastia R et al (2015) Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker. J Neurotrauma 32(22):1805–1814. https://doi.org/10.1089/neu.2014.3736

    Article  PubMed  PubMed Central  Google Scholar 

  9. Eismann T, Huber N, Shin T, Kuboki S, Galloway E, Wyder M, Edwards MJ, Greis KD et al (2009) Peroxiredoxin-6 protects against mitochondrial dysfunction and liver injury during ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 296(2):G266–G274. https://doi.org/10.1152/ajpgi.90583.2008

    Article  CAS  PubMed  Google Scholar 

  10. Elkharaz J, Ugun-Klusek A, Constantin-Teodosiu D, Lawler K, Mayer RJ, Billett E, Lowe J, Bedford L (2013) Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones. Biochim Biophys Acta 1832(12):1930–1938. https://doi.org/10.1016/j.bbadis.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  11. Kim IK, Lee KJ, Rhee S, Seo SB, Pak JH (2013) Protective effects of peroxiredoxin 6 overexpression on amyloid β-induced apoptosis in PC12 cells. Free Radic Res 47(10):836–846. https://doi.org/10.3109/10715762.2013.833330

    Article  CAS  PubMed  Google Scholar 

  12. Manevich Y, Hutchens S, Halushka PV, Tew KD, Townsend DM, Jauch EC, Borg K (2014) Peroxiredoxin VI oxidation in cerebrospinal fluid correlates with traumatic brain injury outcome. Free Radic Biol Med 72:210–221. https://doi.org/10.1016/j.freeradbiomed.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wagner W, Reuter A, Hüller P, Löwer J, Wessler S (2012) Peroxiredoxin 6 promotes upregulation of the prion protein (PrP) in neuronal cells of prion-infected mice. Cell Commun Signal 10(1):38. https://doi.org/10.1186/1478-811x-10-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fisher AB (2019) Antioxidants special issue: peroxiredoxin 6 as a unique member of the peroxiredoxin family. Antioxidants (Basel) 8(4). https://doi.org/10.3390/antiox8040107

  15. Zhou S, Sorokina EM, Harper S, Li H, Ralat L, Dodia C, Speicher DW, Feinstein SI et al (2016) Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity. Free Radic Biol Med 94:145–156. https://doi.org/10.1016/j.freeradbiomed.2016.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yun HM, Park KR, Kim EC, Hong JT (2015) PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget 6(25):20875–20884. https://doi.org/10.18632/oncotarget.5205

    Article  PubMed  PubMed Central  Google Scholar 

  17. Daverey A, Agrawal SK (2016) Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience 333:92–103. https://doi.org/10.1016/j.neuroscience.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  18. Agrawal SK, Fehlings MG (1997) Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury. J Neurosci 17(3):1055–1063. https://doi.org/10.1523/jneurosci.17-03-01055.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daverey A, Agrawal SK (2020) Curcumin protects against white matter injury through NF-κB and Nrf2 cross talk. J Neurotrauma 37(10):1255–1265. https://doi.org/10.1089/neu.2019.6749

    Article  PubMed  Google Scholar 

  20. Wu KC, Cui JY, Klaassen CD (2011) Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci 123(2):590–600. https://doi.org/10.1093/toxsci/kfr183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/reperfusion. Compr Physiol 7(1):113–170. https://doi.org/10.1002/cphy.c160006

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou S, Dodia C, Feinstein SI, Harper S, Forman HJ, Speicher DW, Fisher AB (2018) Oxidation of peroxiredoxin 6 in the presence of GSH increases its phospholipase A2 activity at cytoplasmic pH. Antioxidants (Basel) 8(1). https://doi.org/10.3390/antiox8010004

  23. Yu Q, Huang J, Hu J, Zhu H (2016) Advance in spinal cord ischemia reperfusion injury: blood-spinal cord barrier and remote ischemic preconditioning. Life Sci 154:34–38. https://doi.org/10.1016/j.lfs.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  24. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24(5):254–264. https://doi.org/10.1097/00002826-200109000-00002

    Article  CAS  PubMed  Google Scholar 

  25. Fisher AB (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 617:68–83. https://doi.org/10.1016/j.abb.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  26. Fisher AB, Dodia C, Sorokina EM, Li H, Zhou S, Raabe T, Feinstein SI (2016) A novel lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. J Lipid Res 57(4):587–596. https://doi.org/10.1194/jlr.M064758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Power JH, Asad S, Chataway TK, Chegini F, Manavis J, Temlett JA, Jensen PH, Blumbergs PC et al (2008) Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer's disease pathology. Acta Neuropathol 115(6):611–622. https://doi.org/10.1007/s00401-008-0373-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuang X, Wang LF, Yu L, Li YJ, Wang YN, He Q, Chen C, Du JR (2014) Ligustilide ameliorates neuroinflammation and brain injury in focal cerebral ischemia/reperfusion rats: involvement of inhibition of TLR4/peroxiredoxin 6 signaling. Free Radic Biol Med 71:165–175. https://doi.org/10.1016/j.freeradbiomed.2014.03.028

    Article  CAS  PubMed  Google Scholar 

  29. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H et al (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18(6):911–917. https://doi.org/10.1038/nm.2749

    Article  CAS  PubMed  Google Scholar 

  30. Yeo IJ, Park MH, Son DJ, Kim JY, Nam KT, Hyun BK, Kim SY, Jung MH et al (2019) PRDX6 inhibits neurogenesis through downregulation of WDFY1-mediated TLR4 signal. Mol Neurobiol 56(5):3132–3144. https://doi.org/10.1007/s12035-018-1287-2

    Article  CAS  PubMed  Google Scholar 

  31. Shanshan Y, Beibei J, Li T, Minna G, Shipeng L, Li P, Yong Z (2017) Phospholipase A2 of peroxiredoxin 6 plays a critical role in cerebral ischemia/reperfusion inflammatory injury. Front Cell Neurosci 11:99. https://doi.org/10.3389/fncel.2017.00099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daverey A, Agrawal SK (2018) Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res 1692:45–55. https://doi.org/10.1016/j.brainres.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Yeung PK, McAlonan GM, Chung SS, Chung SK (2013) Transgenic mice over-expressing endothelial endothelin-1 show cognitive deficit with blood-brain barrier breakdown after transient ischemia with long-term reperfusion. Neurobiol Learn Mem 101:46–54. https://doi.org/10.1016/j.nlm.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Shi LL, Gao X, Jiang D, Zhong ZQ, Zeng X, Rao Y, Hu X et al (2015) Lentivirus-mediated inhibition of tumour necrosis factor-α improves motor function associated with PRDX6 in spinal cord contusion rats. Sci Rep 5:8486. https://doi.org/10.1038/srep08486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li H, Benipal B, Zhou S, Dodia C, Chatterjee S, Tao JQ, Sorokina EM, Raabe T et al (2015) Critical role of peroxiredoxin 6 in the repair of peroxidized cell membranes following oxidative stress. Free Radic Biol Med 87:356–365. https://doi.org/10.1016/j.freeradbiomed.2015.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18(12). https://doi.org/10.3390/ijms18122772

  37. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865(5):721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  38. Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MSN, Manchope MF, Zaninelli TH, Casagrande R, Verri WA Jr (2018) Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Front Pharmacol 9:1536. https://doi.org/10.3389/fphar.2018.01536

    Article  CAS  PubMed  Google Scholar 

  39. Lee I, Dodia C, Chatterjee S, Zagorski J, Mesaros C, Blair IA, Feinstein SI, Jain M et al (2013) A novel nontoxic inhibitor of the activation of NADPH oxidase reduces reactive oxygen species production in mouse lung. J Pharmacol Exp Ther 345(2):284–296. https://doi.org/10.1124/jpet.112.201079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fisher AB (2018) The phospholipase A(2) activity of peroxiredoxin 6. J Lipid Res 59(7):1132–1147. https://doi.org/10.1194/jlr.R082578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim SY, Jo HY, Kim MH, Cha YY, Choi SW, Shim JH, Kim TJ, Lee KY (2008) H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem 283(48):33563–33568. https://doi.org/10.1074/jbc.M806578200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bruno D, Pomara N, Nierenberg J, Ritchie JC, Lutz MW, Zetterberg H, Blennow K (2012) Levels of cerebrospinal fluid neurofilament light protein in healthy elderly vary as a function of TOMM40 variants. Exp Gerontol 47(5):347–352. https://doi.org/10.1016/j.exger.2011.09.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Neurosurgery, University of Nebraska Medical Center for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

AD designed and performed experiments, analyzed and interpreted data, and wrote and revised the manuscript. SA conceived, designed and supervised the project, performed some experiments, analyzed data, and was responsible for data interpretation, and writing and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amita Daverey.

Ethics declarations

The animal experiments were carried out in accordance with the UNMC (University of Nebraska Medical Center) Occupational Health and Safety Program for Animal Contact and all the animal procedures used in this study were approved by the IACUC (Institutional Animal Care and Use Committee) of the UNMC.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1.04 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daverey, A., Agrawal, S.K. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 58, 1275–1289 (2021). https://doi.org/10.1007/s12035-020-02182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02182-z

Keywords

Navigation