Skip to main content

Advertisement

Log in

In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurons are vulnerable to injury, and failure to activate self-protective systems after injury leads to neuronal death. However, sensory neurons in dorsal root ganglions (DRGs) mostly survive and regenerate their axons. To understand the mechanisms of the neuronal injury response, we analyzed the injury-responsive transcriptome and found that Stc2 is immediately upregulated after axotomy. Stc2 is required for axon regeneration in vivo and in vitro, indicating that Stc2 is a neuronal factor regulating axonal injury response. The application of the secreted stanniocalcin 2 to injured DRG neurons promotes regeneration. Stc2 thus represents a potential secretory protein with a feedback function regulating regeneration. Finally, the in vivo gene delivery of STC2 increases regenerative growth after injury in peripheral nerves in mice. These results suggest that Stc2 is an injury-responsive gene required for axon regeneration and a potential target for developing therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AU:

arbitrary unit

Ax:

axotomy

AAV:

adeno-associated virus

CM:

conditioned medium

DRB:

5,6-dichlorobenzimidazole 1-β-D-ribofuranoside

DRG:

dorsal root ganglion

HDAC5:

histone deacetylase 5

HDAC5nuc:

histone deacetylase 5, nuclear retention mutant form

HIF-1:

hypoxia-inducible factor 1

Iono:

ionomycin

KD:

knockdown

KO:

knockout

NS:

not significant

PNS:

peripheral nervous system

ShRNA:

short hairpin RNA

SOCE:

store-operated calcium entry

Wk:

week

WT:

wild type

References

  1. Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89:449–460. https://doi.org/10.1016/j.neuron.2015.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18. https://doi.org/10.1083/jcb.201108111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mahar M, Cavalli V (2018) Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci 19:323–337. https://doi.org/10.1038/s41583-018-0001-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee J, Shin JE, Lee B, Kim H, Jeon Y, Ahn SH, Chi SW, Cho Y (2020) The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci U S A 117:15955–15966. https://doi.org/10.1073/pnas.1920829117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, Schultze JL, Bradke F (2016) The calcium channel subunit alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92:419–434. https://doi.org/10.1016/j.neuron.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  6. Shin JE, Cho Y (2017) Epigenetic regulation of axon regeneration after neural injury. Mol Cells 40. https://doi.org/10.14348/molcells.2017.2311

  7. Shin JE, Ha H, Cho EH, Kim YK, Cho Y (2018) Comparative analysis of the transcriptome of injured nerve segments reveals spatiotemporal responses to neural damage in mice. J Comp Neurol 526:1195–1208. https://doi.org/10.1002/cne.24404

    Article  CAS  PubMed  Google Scholar 

  8. Smith DS, Skene JH (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 17:646–658

    Article  CAS  Google Scholar 

  9. Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A (2012) Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74:1015–1022. https://doi.org/10.1016/j.neuron.2012.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shin JE, Ha H, Kim YK, Cho Y, DiAntonio A (2019) DLK regulates a distinctive transcriptional regeneration program after peripheral nerve injury. Neurobiol Dis 127:178–192. https://doi.org/10.1016/j.nbd.2019.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V (2015) Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1α. Neuron 88:720–734. https://doi.org/10.1016/j.neuron.2015.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stannius H (1839) Ober Nebenniere bei Knochenfischen. Arch Anat Physiol 6:97–101

    Google Scholar 

  13. Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA et al (2004) Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 24:9456–9469. https://doi.org/10.1128/mcb.24.21.9456-9469.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zeiger W, Ito D, Swetlik C, Oh-hora M, Villereal ML, Thinakaran G (2011) Stanniocalcin 2 is a negative modulator of store-operated calcium entry. Mol Cell Biol 31:3710–3722. https://doi.org/10.1128/mcb.05140-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang KZ, Lindsberg PJ, Tatlisumak T, Kaste M, Olsen HS, Andersson LC (2000) Stanniocalcin: a molecular guard of neurons during cerebral ischemia. Proc Natl Acad Sci U S A 97:3637–3642. https://doi.org/10.1073/pnas.97.7.3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byun JS, Lee JW, Kim SY, Kwon KJ, Sohn JH, Lee K, Oh D, Kim SS et al (2010) Neuroprotective effects of stanniocalcin 2 following kainic acid-induced hippocampal degeneration in ICR mice. Peptides 31:2094–2099. https://doi.org/10.1016/j.peptides.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  17. Cho Y, Sloutsky R, Naegle KM, Cavalli V (2013) Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155:894–908. https://doi.org/10.1016/j.cell.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65. https://doi.org/10.1038/nbt.1515

    Article  CAS  PubMed  Google Scholar 

  19. Cho Y, Di Liberto V, Carlin D et al (2014) Syntaxin13 expression is regulated by mammalian target of rapamycin (mTOR) in injured neurons to promote axon regeneration. J Biol Chem 289:15820–15832. https://doi.org/10.1074/jbc.M113.536607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song W, Cho Y, Watt D, Cavalli V (2015) Tubulin-tyrosine ligase (TTL)-mediated increase in tyrosinated ??-tubulin in injured axons is required for retrograde injury signaling and axon regeneration. J Biol Chem 290:14765–14775. https://doi.org/10.1074/jbc.M114.622753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho Y, Park D, Kim C (2017) Disruption of TACE-filamin interaction can inhibit TACE-mediated ectodomain shedding. Biochem Biophys Res Commun:490. https://doi.org/10.1016/j.bbrc.2017.06.153

  22. Cho Y, Park D, Cavalli V (2015) Filamin a is required in injured axons for HDAC5 activity and axon regeneration. J Biol Chem 290:22759–22770. https://doi.org/10.1074/jbc.M115.638445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cho Y, Shin JE, Ewan EE, Oh YM, Pita-Thomas W, Cavalli V (2015) Activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal article activating injury-responsive genes with hypoxia enhances axon regeneration through neuronal HIF-1 a. Neuron 88:720–734. https://doi.org/10.1016/j.neuron.2015.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Law AYS, Lai KP, Ip CKM, Wong AST, Wagner GF, Wong CKC (2008) Epigenetic and HIF-1 regulation of stanniocalcin-2 expression in human cancer cells. Exp Cell Res 314:1823–1830. https://doi.org/10.1016/j.yexcr.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Law AYS, Wong CKC (2010) Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Exp Cell Res 316:466–476. https://doi.org/10.1016/j.yexcr.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  26. Frey E, Valakh V, Karney-Grobe S, Shi Y, Milbrandt J, DiAntonio A (2015) An in vitro assay to study induction of the regenerative state in sensory neurons. Exp Neurol 263:350–363. https://doi.org/10.1016/j.expneurol.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  27. Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A (2015) Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis 77:13–25. https://doi.org/10.1016/j.nbd.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shin JE, Geisler S, DiAntonio A (2014) Dynamic regulation of SCG10 in regenerating axons after injury. Exp Neurol 252:1–11. https://doi.org/10.1016/j.expneurol.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  29. Cho Y, Cavalli V (2012) HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J 31:3063–3078. https://doi.org/10.1038/emboj.2012.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH (2012) Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: Superiority to camp-mediated effects. Exp Neurol 235:162–173. https://doi.org/10.1016/j.expneurol.2011.12.037

    Article  PubMed  Google Scholar 

  31. McQuarrie IG, Grafstein B, Dreyfus CF, Gershon MD (1978) Regeneration of adrenergic axons in rat sciatic nerve: effect of a conditioning lesion. Brain Res 141:21–34. https://doi.org/10.1016/0006-8993(78)90614-5

    Article  CAS  PubMed  Google Scholar 

  32. Oudega M, Varon S, Hagg T (1994) Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration. Exp Neurol 129:194–206. https://doi.org/10.1006/exnr.1994.1161

    Article  CAS  PubMed  Google Scholar 

  33. Sjöberg J, Kanje M (1990) The initial period of peripheral nerve regeneration and the importance of the local environment for the conditioning lesion effect. Brain Res 529:79–84. https://doi.org/10.1016/0006-8993(90)90812-P

    Article  PubMed  Google Scholar 

  34. Asghari Adib E, Smithson LJ, Collins CA (2018) An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 53:110–119. https://doi.org/10.1016/j.conb.2018.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karney-Grobe S, Russo A, Frey E, Milbrandt J, DiAntonio A (2018) HSP90 is a chaperone for DLK and is required for axon injury signaling. Proc Natl Acad Sci U S A 115:E9899–E9908. https://doi.org/10.1073/pnas.1805351115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li S, Yang L, Selzer ME, Hu Y (2013) Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration. Ann Neurol 74:768–777. https://doi.org/10.1002/ana.24005

    Article  PubMed  PubMed Central  Google Scholar 

  37. Villanueva MT (2017) Neurodegenerative disease. Nat Rev Drug Discov 16:678–679. https://doi.org/10.1038/nrd.2017.180

    Article  CAS  PubMed  Google Scholar 

  38. Ma W, Quirion R (2017) The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opinion on Therapeutic Targets:8222. https://doi.org/10.1517/14728222.9.4.699

  39. Rigaud M, Gemes G, Weyker PD, Cruikshank JM, Kawano T, Wu HE, Hogan QH (2009) Axotomy depletes intracellular calcium stores in primary sensory neurons. Anesthesiology 111:381–392. https://doi.org/10.1097/ALN.0b013e3181ae6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ziv NE, Spira ME (1995) Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J Neurophysiol 74:2625–2637. https://doi.org/10.1152/jn.1995.74.6.2625

    Article  CAS  PubMed  Google Scholar 

  41. Mandolesi G, MADEDDU F, BOZZI Y et al (2004) Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J 18:1934–1936. https://doi.org/10.1096/fj.04-1805fje

    Article  CAS  PubMed  Google Scholar 

  42. Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60:575–590. https://doi.org/10.1002/iub.91

    Article  CAS  PubMed  Google Scholar 

  43. Jepsen MR, Kløverpris S, Mikkelsen JH, Pedersen JH, Füchtbauer EM, Laursen LS, Oxvig C (2015) Stanniocalcin-2 inhibits mammalian growth by proteolytic inhibition of the insulin-like growth factor axis. J Biol Chem 290:3430–3439. https://doi.org/10.1074/jbc.M114.611665

    Article  CAS  PubMed  Google Scholar 

  44. Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M et al (2016) A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89:956–970. https://doi.org/10.1016/j.neuron.2016.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma TC, Willis DE (2015) What makes a RAG regeneration associated? Front Mol Neurosci 8:1–13. https://doi.org/10.3389/fnmol.2015.00043

    Article  CAS  Google Scholar 

  46. Palmisano I, Di Giovanni S (2018) Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapeutics 15:529–540. https://doi.org/10.1007/s13311-018-0636-1

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stewart JRR, Thompson MBB, Attaway MBB et al (2006) Of the chorioallantoic placentome and the omphalopleure of the placentotrophic lizard, Pseudemoia entrecasteauxii. J Exp Zool Part a-Comparative Exp Biol 305A:883–889. https://doi.org/10.1002/jez.a

    Article  Google Scholar 

  48. Sazonova O, James KA, McCudden CR et al (2008) Stanniocalcin-1 secretion and receptor regulation in kidney cells. Am J Physiol Ren Physiol 294:788–794. https://doi.org/10.1152/ajprenal.00553.2007

    Article  CAS  Google Scholar 

  49. McCudden CR, James KA, Hasilo C, Wagner GF (2002) Characterization of mammalian stanniocalcin receptors: Mitochondrial targeting of ligand and receptor for regulation of cellular metabolism. J Biol Chem 277:45249–45258. https://doi.org/10.1074/jbc.M205954200

    Article  CAS  PubMed  Google Scholar 

  50. McCudden CR, Majewski A, Chakrabarti S, Wagner GF (2004) Co-localization of stanniocalcin-1 ligand and receptor in human breast carcinomas. Mol Cell Endocrinol 213:167–172. https://doi.org/10.1016/j.mce.2003.10.042

    Article  CAS  PubMed  Google Scholar 

  51. Richards TDJ, Fenton AL, Syed R, Wagner GF (2012) Characterization of Stanniocalcin-1 receptors in the rainbow trout. ISRN Endocrinol 2012:1–11. https://doi.org/10.5402/2012/257841

    Article  CAS  Google Scholar 

  52. Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–676. https://doi.org/10.1161/01.STR.0000256294.46009.29

    Article  CAS  PubMed  Google Scholar 

  53. Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch Eur J Physiol 464:111–121. https://doi.org/10.1007/s00424-012-1112-0

    Article  CAS  Google Scholar 

  54. Lee J, Byun JS, Lee K, et al (2010) Stanniocalcin 2 Enhances cell proliferation on dentate gyrus of hippocampus in ICR mice. 124–129

Download references

Funding

This work was supported by the Health Technology R&D Project (HI17C1459) through the Korea Health Industry Development Institute (KHIDI), funded by the Korean Ministry of Health & Welfare and supported by a Korea University Grant to Y.C., by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) 2016R1A5A2007009 to J.E.S.

Author information

Authors and Affiliations

Authors

Contributions

J.E.S., V.C., and Y.C. designed the research; J.E.S., Y.J., M.K., E.C., and Y.C. conducted the research; and J.E.S., V.C., and Y.C. wrote the manuscript.

Corresponding author

Correspondence to Yongcheol Cho.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

All procedures for animal use were approved by the Korea University Institutional Animal Care & Use Committee (KU-IACUC).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, Y., Shin, J.E., Kwon, M. et al. In Vivo Gene Delivery of STC2 Promotes Axon Regeneration in Sciatic Nerves. Mol Neurobiol 58, 750–760 (2021). https://doi.org/10.1007/s12035-020-02155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02155-2

Keywords

Navigation