Skip to main content

Advertisement

Log in

Polymorphism rs11867353 of Tyrosine Kinase Non-Receptor 1 (TNK1) Gene Is a Novel Genetic Marker for Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Several single-nucleotide polymorphisms (SNPs) and rare variants of non-receptor tyrosine kinase 1 gene (TNK1) have been associated with Alzheimer’s disease (AD). To date, none of the associations have proven to be of practical importance in predicting the risk of AD either because the evidence is not conclusive, or the risk alleles occur at very low frequency. In the present study, we are evaluating the associations between rs11867353 polymorphism of TNK1 gene and both AD and mild cognitive impairment (MCI) in a group of 1656 persons. While the association with AD was found to be highly statistically significant (p < 0.0001 for the risk genotype CC), no statistically significant association with MCI could be established. Possible explanation of the apparent discrepancy could be rapid progression of MCI to AD in persons with the CC genotype. Additional findings of the study are statistically significant associations of rs11867353 polymorphism with body mass index, body weight, and body height. The patients with AD and CC genotype had significantly lower values of body mass index and body weight compared with patients with other genotypes. The main outcome of the study is the finding of a previously never described association between the rs11867353 polymorphism of the TNK1 gene and AD. The rs11867353 polymorphism has a potential to become a significant genetic marker when predicting the risk of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and/or Code Availability

Not applicable.

References

  1. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13:612–623. https://doi.org/10.1038/nrneurol.2017.111 correction published in Nat Rev Neurol 13:703 .10.1038/nrneurol.2017.147

    Article  CAS  PubMed  Google Scholar 

  3. Bondi MW, Edmonds EC, Salmon DP (2017) Alzheimer’s disease: past, present, and future. J Int Neuropsychol Soc 23:818–831. https://doi.org/10.1017/S135561771700100X

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67:195–203. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  5. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430. https://doi.org/10.1038/gim.2015.117

    Article  PubMed  Google Scholar 

  6. Šerý O, Povová J, Míšek I, Pešák L, Janout V (2013) Molecular mechanisms of neuro-pathological changes in Alzheimer’s disease: a review. Folia Neuropathol 51:1–9. https://doi.org/10.5114/fn.2013.34190

    Article  CAS  PubMed  Google Scholar 

  7. Mendez MF (2012) Early-onset Alzheimer’s disease: nonamnestic subtypes and Type 2 AD. Arch Med Res 43:677–685. https://doi.org/10.1016/j.arcmed.2012.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174. https://doi.org/10.1001/archpsyc.63.2.168

    Article  PubMed  Google Scholar 

  9. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308. https://doi.org/10.1001/archneur.56.3.303

    Article  CAS  PubMed  Google Scholar 

  10. Langa KM, Levine DA (2014) The diagnosis and management of mild cognitive impairment: a clinical review. JAMA 312:2551–2561

    Article  CAS  Google Scholar 

  11. Jongsiriyanyong S, Limpawattana P (2018) Mild cognitive impairment in clinical practice: a review article. Am J Alzheimers Dis Other Dement 33:500–507. https://doi.org/10.1177/1533317518791401

    Article  Google Scholar 

  12. Edmonds EC, Delano-Wood L, Clark LR, Jak AJ, Nation DA, McDonald CR, Libon DJ, Au R et al (2015) Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimers Dement 11:415–424. https://doi.org/10.1016/j.jalz.2014.03.005

    Article  PubMed  Google Scholar 

  13. Bondi MW, Edmonds EC, Jak AJ, Clark LR, Delano-Wood L, McDonald CR, Nation DA, Libon DJ et al (2014) Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J Alzheimers Dis 42:275–289. https://doi.org/10.3233/JAD-140276

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoehn GT, Stokland T, Amin S, Ramirez M, Hawkins AL, Griffin CA, Small D, Civin CI (1996) Tnk1: A novel intracellular tyrosine kinase gene isolated from human umbilical cord blood CD34+/Lin-/CD38- stem/progenitor cells. Oncogene 12:903–913

    CAS  PubMed  Google Scholar 

  15. Hoare S, Hoare K, Reinhard MK, Flagg TO, May WS Jr (2009) Functional characterization of the murine Tnk1 promoter. Gene 444:1–9. https://doi.org/10.1016/j.gene.2009.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N et al (2018) Thirty-eight-negative kinase 1 mediates traumainduced intestinal injury and multi-organ failure. J Clin Invest 128:5056–5072. https://doi.org/10.1172/JCI97912

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoare S, Hoare K, Reinhard MK, Lee YJ, Oh SP, May WS Jr (2008) Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Res 68:8723–8732. https://doi.org/10.1158/0008-5472.CAN-08-1467

    Article  CAS  PubMed  Google Scholar 

  18. Hong S, Yan Z, Wang H, Ding L, Song Y, Miaomiao B (2019) miR-663b promotes colorectal cancer progression by activating Ras/Raf signaling through downregulation of TNK1. Hum Cell 33:104–115. https://doi.org/10.1007/s13577-019-00294-w

    Article  CAS  PubMed  Google Scholar 

  19. Henderson MC, Gonzales IM, Arora S, Choudhary A, Trent JM, Von Hoff DD, Mousses S, Azorsa DO (2011) High-throughput RNAi screening identifies a role for TNK1 in growth and survival of pancreatic cancer cells. Mol Cancer Res 9:724–732. https://doi.org/10.1158/1541-7786.MCR-10-0436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou Q, Verne GN (2018) Intestinal hyperpermeability: a gateway to multi-organ failure? J Clin Invest 128:4764–4766. https://doi.org/10.1172/JCI124366

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, Kikkawa U, Tellinghuisen T et al (2014) Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A 111:1909–1914. https://doi.org/10.1073/pnas.1314268111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L, Segurado R et al (2007) Evidence for novel susceptibility genes for late-onset Alzheimer’s disease from a genome-wide association study of putative functional variants. Hum Mol Genet 16:865–873. https://doi.org/10.1093/hmg/ddm031

    Article  CAS  PubMed  Google Scholar 

  23. Belbin O, Carrasquillo MM, Crump M, Culley OJ, Hunter TA, Ma L, Bisceglio G, Zou F et al (2011) Investigation of 15 of the top candidate genes for late-onset Alzheimer’s disease. Hum Genet 129:273–282. https://doi.org/10.1007/s00439-010-0924-2

    Article  PubMed  Google Scholar 

  24. Seripa D, Panza F, Paroni G, D’Onofrio G, Bisceglia P, Gravina C, Urbano M, Lozupone M et al (2018) Role of CLU, PICALM, and TNK1 genotypes in aging with and without Alzheimer’s disease. Mol Neurobiol 55:4333–4344. https://doi.org/10.1007/s12035-017-0547-x

    Article  CAS  PubMed  Google Scholar 

  25. Schjeide BMM, McQueen MB, Mullin K, DiVito J, Hogan MF, Parkinson M, Hooli B, Lange C et al (2009) Assessment of Alzheimer’s disease case-control associations using family-based methods. Neurogenetics 10:19–25. https://doi.org/10.1007/s10048-008-0151-3

    Article  PubMed  Google Scholar 

  26. Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S, Zelenika D, Fievet N, Hannequin D et al (2010) Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis 20:1181–1188. https://doi.org/10.3233/JAD-2010-100126

    Article  CAS  PubMed  Google Scholar 

  27. Figgins JA, Minster RL, Demirci FY, DeKosky ST, Kamboh MI (2009) Association studies of 22 candidate SNPs with late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 150B:520–526. https://doi.org/10.1002/ajmg.b.30851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shulman JM, Chibnik LB, Aubin C, Schneider JA, Bennett DA, De Jager PL (2010) Intermediate phenotypes identify divergent pathways to Alzheimer’s disease. PLoS One 5:e11244. https://doi.org/10.1371/journal.pone.0011244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19:3295–3301. https://doi.org/10.1093/hmg/ddq221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He Z, Zhang D, Renton AE, Li B, Zhao L, Wang GT, Goate AM, Mayeux R et al (2017) The rare-variant generalized disequilibrium test for association analysis of nuclear and extended pedigrees with application to Alzheimer disease WGS data. Am J Hum Genet 100:193–204. https://doi.org/10.1016/j.ajhg.2016.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Šerý O, Povová J, Balcar VJ (2014) Perspectives in genetic prediction of Alzheimer’s disease. Neuroendocrinol Lett 35:359–366

    PubMed  Google Scholar 

  32. National Center for Biotechnology Information (2019) Reference SNP (rs) Report rs11867353. https://www.ncbi.nlm.nih.gov/snp/rs11867353. Accessed 12 Oct 2020

  33. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R Core Team (2019) R: a language and environment for statistical computing

  35. Felschow DM, Civin CI, Hoehn GT (2000) Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-γ1. Biochem Biophys Res Commun 273:294–301. https://doi.org/10.1006/bbrc.2000.2887

    Article  CAS  PubMed  Google Scholar 

  36. Greenwood AF, Powers RE, Jope RS (1995) Phosphoinositide hydrolysis, Gαq, phospholipase C, and protein kinase C in post mortem human brain: effects of post mortem interval, subject age, and alzheimer’s disease. Neuroscience 69:125–138. https://doi.org/10.1016/0306-4522(95)00220-D

    Article  CAS  PubMed  Google Scholar 

  37. Crews FT, Kurian P, Freund G (1994) Cholinergic and serotonergic stimulation of phosphoinositide hydrolysis is decreased in Alzheimer’s disease. Life Sci 55:1993–2002. https://doi.org/10.1016/0024-3205(94)00379-3

    Article  CAS  PubMed  Google Scholar 

  38. Jope RS, Song L, Li X, Powers R (1994) Impaired phosphoinositide hydrolysis in Alzheimer’s disease brain. Neurobiol Aging 15:221–226. https://doi.org/10.1016/0197-4580(94)90116-3

    Article  CAS  PubMed  Google Scholar 

  39. Emmerling MR, Moore CJ, Doyle PD, Carroll RT, Davis RE (1993) Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem Biophys Res Commun 197:292–297. https://doi.org/10.1006/bbrc.1993.2474

    Article  CAS  PubMed  Google Scholar 

  40. Wolf BA, Wertkin AM, Jolly YC, Yasuda RP, Wolfe BB, Konrad RJ, Manning D, Ravi S et al (1995) Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid β-protein production in human neuronal NT2N cells. J Biol Chem 270:4916–4922. https://doi.org/10.1074/jbc.270.9.4916

    Article  CAS  PubMed  Google Scholar 

  41. Bertram L, Tanzi RE (2009) Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 18:R137–R145. https://doi.org/10.1093/hmg/ddp406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Azoitei N, Brey A, Busch T, Fulda S, Adler G, Seufferlein T (2007) Thirty-eight-negative kinase 1 (TNK1) facilitates TNFα-induced apoptosis by blocking NF-κB activation. Oncogene 26:6536–6545. https://doi.org/10.1038/sj.onc.1210476

    Article  CAS  PubMed  Google Scholar 

  43. Decourt B, Lahiri D, Sabbagh M (2016) Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res 13:1–1. https://doi.org/10.2174/1567205013666160930110551

    Article  CAS  Google Scholar 

  44. Bell SP, Liu D, Samuels LR, Shah AS, Gifford KA, Hohman TJ, Jefferson AL (2017) Late-life body mass index, rapid weight loss, apolipoprotein E ε4 and the risk of cognitive decline and incident dementia. J Nutr Health Aging 21:1259–1267. https://doi.org/10.1007/s12603-017-0906-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emmerzaal TL, Kiliaan AJ, Gustafson DR (2015) 2003-2013: a decade of body mass index, Alzheimer’s disease and dementia. J Alzheimers Dis 43:739–755. https://doi.org/10.3233/JAD-141086

    Article  PubMed  Google Scholar 

  46. Tolppanen AM, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, Kivipelto M (2014) Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis 38:201–209. https://doi.org/10.3233/JAD-130698

    Article  PubMed  Google Scholar 

  47. Gu Y, Scarmeas N, Cosentino S, Brandt J, Albert M, Blacker D, Dubois B, Stern Y (2014) Change in body mass index before and after Alzheimer’s disease onset. Curr Alzheimer Res 11:349–356. https://doi.org/10.2174/1567205010666131120110930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM (2010) Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 67:428–433. https://doi.org/10.1001/archneurol.2010.38

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank to Petr Ambroz and Ondřej Machaczka for organizing the collection of samples.

Funding

This work has been supported by the Agency for Healthcare Research, Czech Republic (AZV CR)—grant project No. 16-29900A.

Author information

Authors and Affiliations

Authors

Contributions

Tomáš Zeman: writing—original draft preparation, software, formal analysis, visualization. Vladimir J. Balcar: writing—reviewing and editing, conceptualization. Kamila Cahová: investigation. Jana Janoutová: resources. Vladimír Janout: resources, funding acquisition. Jan Lochman: methodology. Omar Šerý: conceptualization, funding acquisition, resources, methodology, project administration, writing—reviewing and editing.

Corresponding author

Correspondence to Omar Šerý.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval

Approval was obtained from the ethics committee of the Faculty of Medicine, University of Ostrava, Czech Republic. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to Participate

Informed consent to participate in the study was obtained from all participants or their legal representatives.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeman, T., Balcar, V.J., Cahová, K. et al. Polymorphism rs11867353 of Tyrosine Kinase Non-Receptor 1 (TNK1) Gene Is a Novel Genetic Marker for Alzheimer’s Disease. Mol Neurobiol 58, 996–1005 (2021). https://doi.org/10.1007/s12035-020-02153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02153-4

Keywords

Navigation