Skip to main content
Log in

Dorsolateral Striatal proBDNF Improves Reversal Learning by Enhancing Coordination of Neural Activity in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Behavioral flexibility allows individuals to adapt to situations in which rewards and goals change. The dorsolateral striatum (DLS) is part of corticostriatal circuits that is involved in flexible behavior. Pro-brain-derived neurotrophic factor (proBDNF) can enhance fear memory extinction and weaken synaptic transmission, which may enable flexible adaptations. However, the role of proBDNF in cognitive flexibility is unclear. Here, through infusion of cleavage-resistant proBDNF or its antibody into the DLS of rats, we sought evidence for the influences by employing behavioral tests, immunoblotting, immunocytochemistry, and electrophysiological recoding. Infusion of proBDNF significantly facilitated reversal learning while inhibiting DLS proBDNF by anti-proBDNF antibody impaired the behavioral performance. Furthermore, elevation of DLS proBDNF facilitated neural correlate with reversal performance while blocking proBDNF expression decayed the spike-field coupling during the correct turning. Reversal learning induced increases in endogenous neuronal proBDNF, with a strong correlation between DLS and infralimbic cortex (IL), but not prelimbic cortex (PL) or sensory-motor cortex (SM). Importantly, blockade of IL proBDNF disrupted the DLS-mediated reversal learning enhancement, implying the involvement of both IL and DLS regions in reversal habitual behavior. Taken together, our findings provide first evidence for the essential role of the DLS proBDNF in cognitive flexibility and suggest that proBDNF-mediated neural function could be the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593

    CAS  PubMed  Google Scholar 

  2. Bergstrom HC, Lipkin AM, Lieberman AG, Pinard CR, Gunduz-Cinar O, Brockway ET, Taylor WW, Nonaka M et al (2018) Dorsolateral striatum engagement interferes with early discrimination learning. Cell Rep 23(8):2264–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zapata A, Minney VL, Shippenberg TS (2010) Shift from goal-directed to habitual cocaine seeking after prolonged experience in rats. J Neurosci 30(46):15457–15463

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lingawi NW, Balleine BW (2012) Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. J Neurosci 32(3):1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Skelin I, Hakstol R, VanOyen J, Mudiayi D, Molina LA, Holec V, Hong NS, Euston DR et al (2014) Lesions of dorsal striatum eliminate lose-switch responding but not mixed-response strategies in rats. Eur J Neurosci 39(10):1655–1663

    PubMed  Google Scholar 

  6. Gremel CM, Costa RM (2013) Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4(1):1–12

    Google Scholar 

  7. Lucantonio F, Caprioli D, Schoenbaum G (2014) Transition from 'model-based' to 'model-free' behavioral control in addiction: involvement of the orbitofrontal cortex and dorsolateral striatum. Neuropharmacology 76 Pt B:407–415

    PubMed  Google Scholar 

  8. Furlong TM, Jayaweera HK, Balleine BW, Corbit LH (2014) Binge-like consumption of a palatable food accelerates habitual control of behavior and is dependent on activation of the dorsolateral striatum. J Neurosci 34(14):5012–5022

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Smittenaar P, Guitart-Masip M, Lutti A, Dolan RJ (2013) Preparing for selective inhibition within frontostriatal loops. J Neurosci 33(46):18087–18097

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Danckert J, Stottinger E, Quehl N, Anderson B (2012) Right hemisphere brain damage impairs strategy updating. Cereb Cortex 22(12):2745–2760

    PubMed  Google Scholar 

  11. Rueda-Orozco PE, Montes-Rodriguez CJ, Soria-Gomez E, Mendez-Diaz M, Prospero-Garcia O (2008) Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats. Neuropharmacology 55(1):55–62

    CAS  PubMed  Google Scholar 

  12. Goodman J, Ressler RL, Packard MG (2016) The dorsolateral striatum selectively mediates extinction of habit memory. Neurobiol Learn Mem 136:54–62

    PubMed  Google Scholar 

  13. Laurent M, De Backer JF, Rial D, Schiffmann SN, de Kerchove d’Exaerde A (2017) Bidirectional control of reversal in a dual action task by direct and indirect pathway activation in the dorsolateral striatum in mice. Front Behav Neurosci 11:256

    PubMed  PubMed Central  Google Scholar 

  14. Aoki S, Liu AW, Akamine Y, Zucca A, Zucca S, Wickens JR (2018) Cholinergic interneurons in the rat striatum modulate substitution of habits. Eur J Neurosci 47(10):1194–1205

    PubMed  PubMed Central  Google Scholar 

  15. Sala-Bayo J, Fiddian L, Nilsson SRO, Hervig ME, McKenzie C, Mareschi A, Boulos M, Zhukovsky P et al (2020) Dorsal and ventral striatal dopamine D1 and D2 receptors differentially modulate distinct phases of serial visual reversal learning. Neuropsychopharmacology 45(5):736–744

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR III, Lafaille JJ, Hempstead BL, Littman DR et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal--prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39(9):2161–2169

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Graybeal C, Feyder M, Schulman E, Saksida LM, Bussey TJ, Brigman JL, Holmes A (2011) Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: Rescue with BDNF. Nat Neurosci 14(12):1507–1509

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu ZQ, Sun Y, Li HY, Lim Y, Zhong JH, Zhou XF (2011) Endogenous proBDNF is a negative regulator of migration of cerebellar granule cells in neonatal mice. Eur J Neurosci 33(8):1376–1384

    PubMed  Google Scholar 

  20. Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7(4):e35883

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Je HS, Yang F, Ji Y, Nagappan G, Hempstead BL, Lu B (2012) Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci U S A 109(39):15924–15929

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B (2009) Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J Cell Biol 185(4):727–741

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ et al (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7(3):796–806

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizui T, Ishikawa Y, Kumanogoh H, Lume M, Matsumoto T, Hara T, Yamawaki S, Takahashi M et al (2015) BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci U S A 112(23):E3067–E3074

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W et al (2013) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 64:65–73

    CAS  PubMed  Google Scholar 

  26. Mills F, Bartlett TE, Dissing-Olesen L, Wisniewska MB, Kuznicki J, Macvicar BA, Wang YT, Bamji SX (2014) Cognitive flexibility and long-term depression (LTD) are impaired following beta-catenin stabilization in vivo. Proc Natl Acad Sci U S A 111(23):8631–8636

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun W, Li J, Cui S, Luo L, Huang P, Tang C, An L (2019) Sleep deprivation disrupts acquisition of contextual fear extinction by affecting circadian oscillation of hippocampal-infralimbic proBDNF. eNeuro 6(5):ENEURO.0165–ENEU19.2019

    Google Scholar 

  28. Sun W, Li X, An L (2018) Distinct roles of prelimbic and infralimbic proBDNF in extinction of conditioned fear. Neuropharmacology 131:11–19

    CAS  PubMed  Google Scholar 

  29. D'Amore DE, Tracy BA, Parikh V (2013) Exogenous BDNF facilitates strategy set-shifting by modulating glutamate dynamics in the dorsal striatum. Neuropharmacology 75:312–323

    CAS  PubMed  Google Scholar 

  30. Harvey E, Blurton-Jones M, Kennedy PJ (2019) Hippocampal BDNF regulates a shift from flexible, goal-directed to habit memory system function following cocaine abstinence. Hippocampus 29(11):1101–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibon J, Buckley SM, Unsain N, Kaartinen V, Seguela P, Barker PA (2015) proBDNF and p75NTR control excitability and persistent firing of cortical pyramidal neurons. J Neurosci 35(26):9741–9753

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, Chen ZY, Mark W et al (2009) Neuronal release of proBDNF. Nat Neurosci 12(2):113–115

    PubMed  PubMed Central  Google Scholar 

  33. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077

    CAS  PubMed  Google Scholar 

  34. Sun W, Li X, Tang C, An L (2018) Acute low alcohol disrupts hippocampus-striatum neural correlate of learning strategy by inhibition of PKA/CREB pathway in rats. Front Pharmacol 9:1439

    CAS  PubMed  PubMed Central  Google Scholar 

  35. An L, Li X, Tang C, Xu N, Sun W (2018) Hippocampal proBDNF facilitates place learning strategy associated with neural activity in rats. Brain Struct Funct 223:4099–4113

    CAS  PubMed  Google Scholar 

  36. Schilling JM, Kassan A, Mandyam C, Pearn ML, Voong A, Grogman GG, Risbrough VB, Niesman IR et al (2017) Inhibition of p75 neurotrophin receptor does not rescue cognitive impairment in adulthood after isoflurane exposure in neonatal mice. Br J Anaesth 119(3):465–471

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K et al (2016) Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology 233(3):405–415

    CAS  PubMed  Google Scholar 

  38. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389(6653):856–860

    CAS  PubMed  Google Scholar 

  39. Freeman AY, Soghomonian JJ, Pierce RC (2003) Tyrosine kinase B and C receptors in the neostriatum and nucleus accumbens are co-localized in enkephalin-positive and enkephalin-negative neuronal profiles and their expression is influenced by cocaine. Neuroscience 117(1):147–156

    CAS  PubMed  Google Scholar 

  40. Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV, Kreitzer AC, Lee JH (2016) Activation of direct and indirect pathway medium spiny neurons drives distinct brain-wide responses. Neuron 91(2):412–424

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmitzer-Torbert N, Apostolidis S, Amoa R, O'Rear C, Kaster M, Stowers J, Ritz R (2015) Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum. Neurobiol Learn Mem 118:105–112

    CAS  PubMed  Google Scholar 

  42. Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13(4):400–408

    PubMed  Google Scholar 

  43. Hart G, Bradfield LA, Balleine BW (2018) Prefrontal corticostriatal disconnection blocks the acquisition of goal-directed action. J Neurosci 38(5):1311–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gourley SL, Taylor JR (2016) Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci 19(6):656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bortz DM, Gazo KL, Grace AA (2019) The medial septum enhances reversal learning via opposing actions on ventral tegmental area and substantia nigra dopamine neurons. Neuropsychopharmacology 44(13):2186–2194

    CAS  PubMed  PubMed Central  Google Scholar 

  46. An L, Sun W (2018) Acute melamine affects spatial memory consolidation via inhibiting hippocampal NMDAR-dependent LTD in rats. Toxicol Sci 163(2):385–396

    CAS  PubMed  Google Scholar 

  47. Holm MM, Nieto-Gonzalez JL, Vardya I, Vaegter CB, Nykjaer A, Jensen K (2009) Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus. J Neurosci 29(40):12412–12418

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bai YY, Ruan CS, Yang CR, Li JY, Kang ZL, Zhou L, Liu D, Zeng YQ et al (2016) ProBDNF signaling regulates depression-like behaviors in rodents under chronic stress. Neuropsychopharmacology 41(12):2882–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Buhusi M, Etheredge C, Granholm AC, Buhusi CV (2017) Increased hippocampal ProBDNF contributes to memory impairments in aged mice. Front Aging Neurosci 9:284. https://doi.org/10.3389/fnagi.2017.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pereira VS, Suavinha A, Wegener G, Joca SRL (2019) Prelimbic neuronal nitric oxide synthase inhibition exerts antidepressant-like effects independently of BDNF signalling cascades. Acta Neuropsychiatr 31(3):143–150

    PubMed  Google Scholar 

  51. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. New York: Academic Press, Amsterdam

  52. Thorn CA, Atallah H, Howe M, Graybiel AM (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66(5):781–795

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fiebelkorn IC, Pinsk MA, Kastner S (2018) A dynamic interplay within the frontoparietal network underlies rhythmic spatial attention. Neuron 99(4):842–853. e848

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marquardt K, Cavanagh JF, Brigman JL (2020) Alcohol exposure in utero disrupts cortico-striatal coordination required for behavioral flexibility. Neuropharmacology 162:107832

    CAS  PubMed  Google Scholar 

  55. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT press, Cambridge

    Google Scholar 

  56. Rosas-Vidal LE, Lozada-Miranda V, Cantres-Rosario Y, Vega-Medina A, Melendez L, Quirk GJ (2018) Alteration of BDNF in the medial prefrontal cortex and the ventral hippocampus impairs extinction of avoidance. Neuropsychopharmacology 43(13):2636–2644

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vignoli B, Battistini G, Melani R, Blum R, Santi S, Berardi N, Canossa M (2016) Peri-synaptic glia recycles brain-derived Neurotrophic factor for LTP stabilization and memory retention. Neuron 92(4):873–887

    CAS  PubMed  Google Scholar 

  58. Monnier A, Garnier P, Quirie A, Pernet N, Demougeot C, Marie C, Prigent-Tessier A (2017) Effect of short-term exercise training on brain-derived neurotrophic factor signaling in spontaneously hypertensive rats. J Hypertens 35(2):279–290

    CAS  PubMed  Google Scholar 

  59. Shen WY, Luo C, Reinaldo Hurtado P, Hurtado-Perez E, Luo RY, Hu ZL, Li H, Xu JM et al (2020) The regulatory role of ProBDNF in monocyte function: Implications in Stanford type-A aortic dissection disease. FASEB J 34(2):2541–2553

    CAS  PubMed  Google Scholar 

  60. Gourley SL, Swanson AM, Jacobs AM, Howell JL, Mo M, Dileone RJ, Koleske AJ, Taylor JR (2012) Action control is mediated by prefrontal BDNF and glucocorticoid receptor binding. Proc Natl Acad Sci U S A 109(50):20714–20719

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McCarthy DM, Bell GA, Cannon EN, Mueller KA, Huizenga MN, Sadri-Vakili G, Fadool DA, Bhide PG (2016) Reversal learning deficits associated with increased frontal cortical brain-derived neurotrophic factor tyrosine kinase B signaling in a prenatal cocaine exposure mouse model. Dev Neurosci 38(5):354–364

    CAS  PubMed  Google Scholar 

  62. Parikh V, Naughton SX, Yegla B, Guzman DM (2016) Impact of partial dopamine depletion on cognitive flexibility in BDNF heterozygous mice. Psychopharmacology 233(8):1361–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Haluk DM, Floresco SB (2009) Ventral striatal dopamine modulation of different forms of behavioral flexibility. Neuropsychopharmacology 34(8):2041–2052

    CAS  PubMed  Google Scholar 

  64. Desai SJ, Allman BL, Rajakumar N (2017) Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function. Behav Brain Res 323:24–31

    CAS  PubMed  Google Scholar 

  65. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    CAS  PubMed  Google Scholar 

  66. Guo J, Ji Y, Ding Y, Jiang W, Sun Y, Lu B, Nagappan G (2016) BDNF pro-peptide regulates dendritic spines via caspase-3. Cell Death Dis 7:e2264

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wirz L, Bogdanov M, Schwabe L (2018) Habits under stress: mechanistic insights across different types of learning. Curr Opin Behav Sci 20:9–16

    Google Scholar 

  68. Jeanblanc J, Coune F, Botia B, Naassila M (2014) Brain-derived neurotrophic factor mediates the suppression of alcohol self-administration by memantine. Addict Biol 19(5):758–769

    CAS  PubMed  Google Scholar 

  69. Diniz C, Casarotto PC, Resstel L, Joca SRL (2018) Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 90:70–83

    CAS  PubMed  Google Scholar 

  70. Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58(7):951–961

    CAS  PubMed  PubMed Central  Google Scholar 

  71. An L, Sun W (2017) Prenatal melamine exposure impairs spatial cognition and hippocampal synaptic plasticity by presynaptic and postsynaptic inhibition of glutamatergic transmission in adolescent offspring. Toxicol Lett 269:55–64

    CAS  PubMed  Google Scholar 

  72. Liu X, Gu QH, Duan K, Li Z (2014) NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory. J Neurosci 34(26):8741–8748

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma Q, Yang J, Li T, Milner TA, Hempstead BL (2015) Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Neurobiol Dis 82:466–477

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG (2012) NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Neuropharmacology 62(2):797–806

    CAS  PubMed  Google Scholar 

  75. Li WG, Liu MG, Deng S, Liu YM, Shang L, Ding J, Hsu TT, Jiang Q et al (2016) ASIC1a regulates insular long-term depression and is required for the extinction of conditioned taste aversion. Nat Commun 7:13770

    CAS  PubMed  PubMed Central  Google Scholar 

  76. DeCoteau WE, Thorn C, Gibson DJ, Courtemanche R, Mitra P, Kubota Y, Graybiel AM (2007) Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci U S A 104(13):5644–5649

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T, Davis MI, Hansson AC, Lovinger DM et al (2009) Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 12(3):333–341

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gibon J, Barker PA, Seguela P (2016) Opposing presynaptic roles of BDNF and ProBDNF in the regulation of persistent activity in the entorhinal cortex. Mol Brain 9:23

    PubMed  PubMed Central  Google Scholar 

  79. Dougherty KD, Milner TA (1999) p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. J Comp Neurol 407(1):77–91

    CAS  PubMed  Google Scholar 

  80. Crego ACG, Stocek F, Marchuk AG, Carmichael JE, van der Meer MAA, Smith KS (2020) Complementary control over habits and behavioral vigor by phasic activity in the dorsolateral striatum. J Neurosci 40(10):2139–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schutte I, Kenemans JL, Schutter D (2017) Resting-state theta/beta EEG ratio is associated with reward- and punishment-related reversal learning. Cogn Affect Behav Neurosci 17(4):754–763

    PubMed  PubMed Central  Google Scholar 

  82. Massar SA, Kenemans JL, Schutter DJ (2014) Resting-state EEG theta activity and risk learning: Sensitivity to reward or punishment? Int J Psychophysiol 91(3):172–177

    PubMed  Google Scholar 

  83. Amemori KI, Amemori S, Gibson DJ, Graybiel AM (2018) Striatal microstimulation induces persistent and repetitive negative decision-making predicted by striatal Beta-band oscillation. Neuron 99(4):829–841 e826

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Leventhal DK, Gage GJ, Schmidt R, Pettibone JR, Case AC, Berke JD (2012) Basal ganglia beta oscillations accompany cue utilization. Neuron 73(3):523–536

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu H, Perez S, Cornil A, Detraux B, Prokin I, Cui Y, Degos B, Berry H et al (2018) Dopamine-endocannabinoid interactions mediate spike-timing-dependent potentiation in the striatum. Nat Commun 9(1):4118

    PubMed  PubMed Central  Google Scholar 

  86. Engel AK, Fries P (2010) Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol 20(2):156–165

    CAS  PubMed  Google Scholar 

  87. Jing D, Lee FS, Ninan I (2017) The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 112(Pt A):84–93

    CAS  PubMed  Google Scholar 

  88. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5(6):311–322

    CAS  PubMed  Google Scholar 

  89. Yang M, Lim Y, Li X, Zhong JH, Zhou XF (2011) Precursor of brain-derived neurotrophic factor (proBDNF) forms a complex with Huntingtin-associated protein-1 (HAP1) and sortilin that modulates proBDNF trafficking, degradation, and processing. J Biol Chem 286(18):16272–16284

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu LL, Fan Y, Li S, Li XJ, Zhou XF (2010) Huntingtin-associated protein-1 interacts with pro-brain-derived neurotrophic factor and mediates its transport and release. J Biol Chem 285(8):5614–5623

    CAS  PubMed  Google Scholar 

  91. Vaghi MM, Vertes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, Sule A, Zaman R et al (2017) Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry 81(8):708–717

    PubMed  PubMed Central  Google Scholar 

  92. Lang S, Yoon EJ, Kibreab M, Kathol I, Cheetham J, Hammer T, Sarna J, Ismail Z et al (2020) Mild behavioral impairment in Parkinson’s disease is associated with altered corticostriatal connectivity. Neuroimage Clin 26:102252

    PubMed  PubMed Central  Google Scholar 

  93. Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: Insights from Huntington's disease. Trends Cogn Sci 2(10):379–388

    CAS  PubMed  Google Scholar 

  94. Simioni AC, Dagher A, Fellows LK (2017) Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson’s disease. Cortex 93:193–205

    PubMed  Google Scholar 

  95. Zajac MS, Pang TY, Wong N, Weinrich B, Leang LS, Craig JM, Saffery R, Hannan AJ (2010) Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington's disease mice. Hippocampus 20(5):621–636

    CAS  PubMed  Google Scholar 

  96. Dobrossy MD, Dunnett SB (2006) Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. Eur J Neurosci 24(11):3223–3233

    PubMed  Google Scholar 

  97. Cohen MX, Ridderinkhof KR, Haupt S, Elger CE, Fell J (2008) Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain Res 1238:127–142

    CAS  PubMed  Google Scholar 

  98. McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N (2011) Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc Natl Acad Sci U S A 108(28):11620–11625

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu Z, Guo A, Fu X (2017) Generation of low-gamma oscillations in a GABAergic network model of the striatum. Neural Netw 95:72–90

    PubMed  Google Scholar 

  101. Fujisawa S, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2004) BDNF boosts spike fidelity in chaotic neural oscillations. Biophys J 86(3):1820–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Howe MW, Atallah HE, McCool A, Gibson DJ, Graybiel AM (2011) Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci U S A 108(40):16801–16806

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Evans RC, Maniar YM, Blackwell KT (2013) Dynamic modulation of spike timing-dependent calcium influx during corticostriatal upstates. J Neurophysiol 110(7):1631–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ji X, Martin GE (2012) New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons. Eur J Neurosci 36(12):3615–3627

    PubMed  PubMed Central  Google Scholar 

  105. Ray MT, Shannon Weickert C, Webster MJ (2014) Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry 4:e389

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rausch F, Mier D, Eifler S, Esslinger C, Schilling C, Schirmbeck F, Englisch S, Meyer-Lindenberg A et al (2014) Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia. Schizophr Res 156(2–3):143–149

    PubMed  Google Scholar 

  107. McCutcheon RA, Abi-Dargham A, Howes OD (2019) Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends Neurosci 42(3):205–220

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sara Khalaj for her valuable comments on the revised version of the manuscript. We also thank Dr. Xiaoliang Li, Dr. Xuan Zhang, Miss Weiwei Feng, Dr. Yang Hu, and Dongguo Xiao for their help in preparation of the revision.

Funding

This work was supported by Grants from the National Natural Science Foundation of China 31700929 to LA.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: WS JL, DXT, and LA; performed the experiments: WS, HXC, XYL, and WHL; analyzed the data: WS, JL, and LA; wrote the manuscript: WS, DXT, and LA.

Corresponding author

Correspondence to Lei An.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Statement

All animal experiments and procedures were reviewed and approved by the Experimental Animal Care Committee of Guizhou University of Traditional Chinese Medicine (SCXK-2013-0020).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Che, H., Li, J. et al. Dorsolateral Striatal proBDNF Improves Reversal Learning by Enhancing Coordination of Neural Activity in Rats. Mol Neurobiol 57, 4642–4656 (2020). https://doi.org/10.1007/s12035-020-02051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02051-9

Keywords

Navigation