Skip to main content

Advertisement

Log in

Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sphingosine-1-phosphate (S1P) produced by sphingosine kinases (SPHK1 and SPHK2) is a signaling molecule involved in cell proliferation and formation of cellular junctions. In this study, we characterized the retinas of Sphk1 knockout (KO) mice by electron microscopy and immunocytochemistry. We also tested cultured Müller glia for their response to S1P. We found that S1P plays an important role in retinal and retinal pigment epithelial (RPE) structural integrity in aging mice. Ultrastructural analysis of Sphk1 KO mouse retinas aged to 15 months or raised with moderate light stress revealed a degenerated outer limiting membrane (OLM). This membrane is formed by adherens junctions between neighboring Müller glia and photoreceptor cells. We also show that Sphk1 KO mice have reduced retinal function in mice raised with moderate light stress. In vitro assays revealed that exogenous S1P modulated cytoskeletal rearrangement and increased N-cadherin production in human Müller glia cells. Aged mice also had morphological degeneration of the RPE, as well as increased lipid storage vacuoles and undigested phagosomes reminiscent of RPE in age-related macular degeneration. These findings show that SPHK1 and S1P play a vital role in the structural maintenance of the mammalian retina and retinal pigmented epithelium by supporting the formation of adherens junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  2. van de Pavert SA, Kantardzhieva A, Malysheva A, Meuleman J, Versteeg I, Levelt C, Klooster J, Geiger S et al (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117(Pt 18):4169–4177. https://doi.org/10.1242/jcs.01301

    Article  CAS  PubMed  Google Scholar 

  3. van Rossum AG, Aartsen WM, Meuleman J, Klooster J, Malysheva A, Versteeg I, Arsanto JP, Le Bivic A et al (2006) Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. Hum Mol Genet 15(18):2659–2672. https://doi.org/10.1093/hmg/ddl194

    Article  PubMed  Google Scholar 

  4. Stuck MW, Conley SM, Naash MI (2012) Defects in the outer limiting membrane are associated with rosette development in the Nrl−/− retina. PLoS One 7(3):e32484. https://doi.org/10.1371/journal.pone.0032484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208. https://doi.org/10.1109/RBME.2010.2084567

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y (2010) The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol 150(1):27–32 e21. https://doi.org/10.1016/j.ajo.2010.02.012

    Article  PubMed  Google Scholar 

  7. Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S (2008) Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 49(7):3095–3099. https://doi.org/10.1167/iovs.07-1460

    Article  PubMed  Google Scholar 

  8. Landa G, Gentile RC, Garcia PM, Muldoon TO, Rosen RB (2012) External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (Lond) 26(1):61–69. https://doi.org/10.1038/eye.2011.237

    Article  CAS  Google Scholar 

  9. Chen X, Zhang L, Sohn EH, Lee K, Niemeijer M, Chen J, Sonka M, Abramoff MD (2012) Quantification of external limiting membrane disruption caused by diabetic macular edema from SD-OCT. Invest Ophthalmol Vis Sci 53(13):8042–8048. https://doi.org/10.1167/iovs.12-10083

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scarinci F, Shaarawy A, Narala R, Jampol LM, Fawzi AA (2016) Loss of external limiting membrane integrity predicts progression of hydroxychloroquine retinal toxicity after drug discontinuation. Retina 36(10):1951–1957. https://doi.org/10.1097/IAE.0000000000001217

    Article  CAS  PubMed  Google Scholar 

  11. Narala R, Scarinci F, Shaarawy A, Simonett JM, Flaxel CJ, Fawzi AA (2016) Longitudinal quantitative evaluation of photoreceptor volume following repair of macula-off retinal detachment. Retina 36(8):1432–1438. https://doi.org/10.1097/IAE.0000000000000971

    Article  PubMed  Google Scholar 

  12. Scarinci F, Fawzi AA, Shaarawy A, Simonett JM, Jampol LM (2017) Longitudinal quantitative evaluation of outer retinal lesions in acute posterior multifocal Placoid pigment Epitheliopathy using optical coherence tomography. Retina 37(5):851–857. https://doi.org/10.1097/IAE.0000000000001245

    Article  PubMed  Google Scholar 

  13. Williams DS, Arikawa K, Paallysaho T (1990) Cytoskeletal components of the adherens junctions between the photoreceptors and the supportive Müller cells. J Comp Neurol 295(1):155–164. https://doi.org/10.1002/cne.902950113

    Article  CAS  PubMed  Google Scholar 

  14. Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276(15):11830–11837. https://doi.org/10.1074/jbc.M009422200

    Article  CAS  PubMed  Google Scholar 

  15. Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782. https://doi.org/10.1038/sj.embor.7400208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S et al (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735. https://doi.org/10.1158/0008-5472.CAN-11-2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Buckley NE, Gibson K, Spiegel S (1990) Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem 265(1):76–81

    CAS  PubMed  Google Scholar 

  18. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24):11113–11121. https://doi.org/10.1128/MCB.25.24.11113-11121.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI et al (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3):301–312

    Article  CAS  Google Scholar 

  20. Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB (2005) Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. J Biol Chem 280(17):17320–17328. https://doi.org/10.1074/jbc.M411674200

    Article  CAS  PubMed  Google Scholar 

  21. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V et al (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610. https://doi.org/10.1016/j.devcel.2012.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279(50):52487–52492. https://doi.org/10.1074/jbc.M406512200

    Article  CAS  PubMed  Google Scholar 

  23. Qi H, Priyadarsini S, Nicholas SE, Sarker-Nag A, Allegood J, Chalfant CE, Mandal NA, Karamichos D (2017) Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients. J Lipid Res 58(4):636–648. https://doi.org/10.1194/jlr.M067264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen H, Tran JT, Eckerd A, Huynh TP, Elliott MH, Brush RS, Mandal NA (2013) Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration. J Lipid Res 54(6):1616–1629. https://doi.org/10.1194/jlr.M035048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, Chalfant CE, Yasumura D et al (2016) Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 57(5):818–831. https://doi.org/10.1194/jlr.M063719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573. https://doi.org/10.1038/nprot.2009.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43(3):864–869

    PubMed  Google Scholar 

  28. Wu M, Yang S, Elliott MH, Fu D, Wilson K, Zhang J, Du M, Chen J et al (2012) Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Müller cells. Invest Ophthalmol Vis Sci 53(8):4595–4604. https://doi.org/10.1167/iovs.12-9910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  30. Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12(17):2179–2189. https://doi.org/10.1093/hmg/ddg232

    Article  CAS  PubMed  Google Scholar 

  31. Wright CB, Redmond TM, Nickerson JM (2015) A history of the classical visual cycle. Prog Mol Biol Transl Sci 134:433–448. https://doi.org/10.1016/bs.pmbts.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  32. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25(1):8–15. https://doi.org/10.1152/physiol.00038.2009

    Article  CAS  Google Scholar 

  33. Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42(2):392–403

    Article  CAS  Google Scholar 

  34. LaVail MM (1976) Rod outer segment disk shedding in rat retina: Relationship to cyclic lighting. Science 194(4269):1071–1074

    Article  CAS  Google Scholar 

  35. Sensken SC, Bode C, Nagarajan M, Peest U, Pabst O, Graler MH (2010) Redistribution of sphingosine 1-phosphate by sphingosine kinase 2 contributes to lymphopenia. J Immunol 184(8):4133–4142. https://doi.org/10.4049/jimmunol.0903358

    Article  CAS  PubMed  Google Scholar 

  36. Zemann B, Kinzel B, Müller M, Reuschel R, Mechtcheriakova D, Urtz N, Bornancin F, Baumruker T et al (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107(4):1454–1458. https://doi.org/10.1182/blood-2005-07-2628

    Article  CAS  PubMed  Google Scholar 

  37. Kharel Y, Raje M, Gao M, Gellett AM, Tomsig JL, Lynch KR, Santos WL (2012) Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem J 447(1):149–157. https://doi.org/10.1042/BJ20120609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendelson K, Evans T, Hla T (2014) Sphingosine 1-phosphate signalling. Development 141(1):5–9. https://doi.org/10.1242/dev.094805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pyszko JA, Strosznajder JB (2014) The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease. Folia Neuropathol 52(3):260–269

    Article  Google Scholar 

  40. Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A et al (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100(1):41–49. https://doi.org/10.1161/01.RES.0000253900.66640.34

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106(8):951–961. https://doi.org/10.1172/JCI10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18(19):2392–2403. https://doi.org/10.1101/gad.1227804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Malicki J, Jo H, Pujic Z (2003) Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev Biol 259(1):95–108

    Article  CAS  Google Scholar 

  44. Pujic Z, Malicki J (2001) Mutation of the zebrafish glass onion locus causes early cell-nonautonomous loss of neuroepithelial integrity followed by severe neuronal patterning defects in the retina. Dev Biol 234(2):454–469. https://doi.org/10.1006/dbio.2001.0251

    Article  CAS  PubMed  Google Scholar 

  45. Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M et al (2002) Parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129(14):3281–3294

    CAS  PubMed  Google Scholar 

  46. Park B, Alves CH, Lundvig DM, Tanimoto N, Beck SC, Huber G, Richard F, Klooster J et al (2011) PALS1 is essential for retinal pigment epithelium structure and neural retina stratification. J Neurosci 31(47):17230–17241. https://doi.org/10.1523/JNEUROSCI.4430-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G et al (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125(3):535–548. https://doi.org/10.1016/j.cell.2006.02.045

    Article  CAS  PubMed  Google Scholar 

  48. Esche M, Hirrlinger PG, Rillich K, Yafai Y, Pannicke T, Reichenbach A, Weick M (2010) Signalling of sphingosine-1-phosphate in Müller glial cells via the S1P/EDG-family of G-protein-coupled receptors. Neurosci Lett 480(2):101–105. https://doi.org/10.1016/j.neulet.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  49. Simon MV, Prado Spalm FH, Politi LE, Rotstein NP (2015) Sphingosine-1-phosphate is a crucial signal for migration of retina Müller glial cells. Invest Ophthalmol Vis Sci 56(10):5808–5815. https://doi.org/10.1167/iovs.14-16195

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA (2010) Abundant lipid and protein components of drusen. PLoS One 5(4):e10329. https://doi.org/10.1371/journal.pone.0010329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen H, Chan AY, Stone DU, Mandal NA (2014) Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 59(1):64–76. https://doi.org/10.1016/j.survophthal.2013.02.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the services of the Imaging Core and all the hard work done by the animal facility at the Dean McGee Eye Institute. We also want to thank Ben Fowler and Julie Crane at the Oklahoma Medical Research Foundation for their help with the super-resolution microscopy and use of the Imaging Facility to do our TEM work; Dr. Koushik Mondal from Ophthalmology, UTHSC for his help in animal experiments; Dr. Jeremy Allegood, Operational Director of Lipidomics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048; and VCU Lipidomics/Metabolomics Core, the NIH-NCI Cancer Center Support Grant P30 CA016059 to the VCU Massey Cancer Center, as well as a shared resource grant (S10RR031535) from the National Institutes of Health in all manuscripts of which data generated by the VCU Lipidomics/Metabolomics Core is included as well as maintain NIH compliance for NCBI registration of manuscripts that utilize data derived from the VCU Lipidomics/Metabolomics core.

Funding

NAM: NIH grants EY022071, EY025256, and EY021725 (Foundation Fighting Blindness and Research to Prevent Blindness, USA). JLW: T32EY023202 (VCU Lipidomics/Metabolomics Core: NIH grants P30 CA016059 and S10 RR031535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawajes A. Mandal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 1042 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkerson, J.L., Stiles, M.A., Gurley, J.M. et al. Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. Mol Neurobiol 56, 7188–7207 (2019). https://doi.org/10.1007/s12035-019-1599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1599-x

Keywords

Navigation