Skip to main content

Advertisement

Log in

Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18−/− mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18−/− neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18−/− mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Supporting Data

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Warburg M, Sjo O, Fledelius HC, Pedersen SA (1993) Autosomal recessive microcephaly, microcornea, congenital cataract, mental retardation, optic atrophy, and hypogenitalism. Micro syndrome. Am J Dis Child 147(12):1309–1312

    Article  CAS  PubMed  Google Scholar 

  2. Megarbane A, Choueiri R, Bleik J, Mezzina M, Caillaud C (1999) Microcephaly, microphthalmia, congenital cataract, optic atrophy, short stature, hypotonia, severe psychomotor retardation, and cerebral malformations: a second family with micro syndrome or a new syndrome? J Med Genet 36(8):637–640

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ainsworth JR, Morton JE, Good P, Woods CG, George ND, Shield JP, Bradbury J, Henderson MJ et al (2001) Micro syndrome in Muslim Pakistan children. Ophthalmology 108(3):491–497

    Article  CAS  PubMed  Google Scholar 

  4. Graham JM Jr, Hennekam R, Dobyns WB, Roeder E, Busch D (2004) MICRO syndrome: an entity distinct from COFS syndrome. Am J Med Genet A 128a(3):235–245. https://doi.org/10.1002/ajmg.a.30060

    Article  PubMed  Google Scholar 

  5. Rodriguez Criado G, Rufo M, Gomez de Terreros I (1999) A second family with micro syndrome. Clin Dysmorphol 8(4):241–245

    CAS  PubMed  Google Scholar 

  6. Bem D, Yoshimura S, Nunes-Bastos R, Bond FC, Kurian MA, Rahman F, Handley MT, Hadzhiev Y et al (2011) Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88(4):499–507. https://doi.org/10.1016/j.ajhg.2011.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Handley MT, Aligianis IA (2012) RAB3GAP1, RAB3GAP2 and RAB18: disease genes in micro and Martsolf syndromes. Biochem Soc Trans 40(6):1394–1397. https://doi.org/10.1042/bst20120169

    Article  CAS  PubMed  Google Scholar 

  8. Handley MT, Morris-Rosendahl DJ, Brown S, Macdonald F, Hardy C, Bem D, Carpanini SM, Borck G et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat 34(5):686–696. https://doi.org/10.1002/humu.22296

    Article  CAS  PubMed  Google Scholar 

  9. Liegel RP, Handley MT, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl DJ, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam GMH, Terhal PA, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert AD, Barr FA, Aligianis IA, Sidjanin DJ (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J hum genet doi:https://doi.org/10.1016/j.ajhg.2013.10.011, 93, 1001, 1014

  10. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149. https://doi.org/10.1152/physrev.00059.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bucci C, De Luca M (2012) Molecular basis of Charcot-Marie-Tooth type 2B disease. Biochem Soc Trans 40(6):1368–1372. https://doi.org/10.1042/BST20120197

    Article  CAS  PubMed  Google Scholar 

  12. Cogli L, Piro F, Bucci C (2009) Rab7 and the CMT2B disease. Biochem Soc Trans 37 (Pt 5):1027–1031. doi:https://doi.org/10.1042/bst0371027

  13. Hidestrand P, Vasconez H, Cottrill C (2009) Carpenter syndrome. J Craniofac Surg 20(1):254–256. https://doi.org/10.1097/SCS.0b013e318184357a

    Article  PubMed  Google Scholar 

  14. Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412(6843):194–198. https://doi.org/10.1038/35084089

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D et al (2007) RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80(6):1162–1170. https://doi.org/10.1086/518047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hurvitz H, Gillis R, Klaus S, Klar A, Gross-Kieselstein F, Okon E (1993) A kindred with Griscelli disease: spectrum of neurological involvement. Eur J Pediatr 152(5):402–405

    Article  CAS  PubMed  Google Scholar 

  17. Haraldsson A, Weemaes CM, Bakkeren JA, Happle R (1991) Griscelli disease with cerebral involvement. Eur J Pediatr 150(6):419–422

    Article  CAS  PubMed  Google Scholar 

  18. Anikster Y, Huizing M, Anderson PD, Fitzpatrick DL, Klar A, Gross-Kieselstein E, Berkun Y, Shazberg G et al (2002) Evidence that Griscelli syndrome with neurological involvement is caused by mutations in RAB27A, not MYO5A. Am J Hum Genet 71(2):407–414. https://doi.org/10.1086/341606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA et al (2018) Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 9(1):2498. https://doi.org/10.1038/s41467-018-04880-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seixas E, Barros M, Seabra MC, Barral DC (2013) Rab and Arf proteins in genetic diseases. Traffic 14(8):871–885. https://doi.org/10.1111/tra.12072

    Article  CAS  PubMed  Google Scholar 

  21. Giannandrea M, Bianchi V, Mignogna ML, Sirri A, Carrabino S, D’Elia E, Vecellio M, Russo S et al (2010) Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 86(2):185–195. https://doi.org/10.1016/j.ajhg.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lutcke A, Parton RG, Murphy C, Olkkonen VM, Dupree P, Valencia A, Simons K, Zerial M (1994) Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J Cell Sci 107(Pt 12):3437–3448

    PubMed  Google Scholar 

  23. Yu H, Leaf DS, Moore HP (1993) Gene cloning and characterization of a GTP-binding Rab protein from mouse pituitary AtT-20 cells. Gene 132(2):273–278

    Article  CAS  PubMed  Google Scholar 

  24. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335. https://doi.org/10.1074/jbc.M506651200

  25. Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(Pt 12):2601–2611. https://doi.org/10.1242/jcs.02401

    Article  CAS  PubMed  Google Scholar 

  26. Martin S, Parton RG (2008) Characterization of Rab18, a lipid droplet-associated small GTPase. Methods Enzymol 438:109–129. https://doi.org/10.1016/S0076-6879(07)38008-7

    Article  CAS  PubMed  Google Scholar 

  27. Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F, Lopez-Miranda J, Fruhbeck G et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6(7):e22931. https://doi.org/10.1371/journal.pone.0022931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pulido MR, Rabanal-Ruiz Y, Almabouada F, Diaz-Ruiz A, Burrell MA, Vazquez MJ, Castano JP, Kineman RD et al (2013) Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 50(1):19–29. https://doi.org/10.1530/JME-12-0140

    Article  CAS  PubMed  Google Scholar 

  29. Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279(45):46835–46842. https://doi.org/10.1074/jbc.M409340200

  30. Makino A, Hullin-Matsuda F, Murate M, Abe M, Tomishige N, Fukuda M, Yamashita S, Fujimoto T et al (2016) Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Mol Biol Cell 27(21):3293–3304. https://doi.org/10.1091/mbc.E15-10-0730

  31. Li C, Luo X, Zhao S, Siu GK, Liang Y, Chan HC, Satoh A, Yu SS (2017) COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36(4):441–457. https://doi.org/10.15252/embj.201694866

    Article  CAS  PubMed  Google Scholar 

  32. Dubiel D, Bintig W, Kahne T, Dubiel W, Naumann M (2017) Cul3 neddylation is crucial for gradual lipid droplet formation during adipogenesis. Biochim Biophys Acta 1864(8):1405–1412. https://doi.org/10.1016/j.bbamcr.2017.05.009

    Article  CAS  Google Scholar 

  33. Gerondopoulos A, Bastos RN, Yoshimura S, Anderson R, Carpanini S, Aligianis I, Handley MT, Barr FA (2014) Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 205(5):707–720. https://doi.org/10.1083/jcb.201403026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB et al (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121(Pt 16):2768–2781. https://doi.org/10.1242/jcs.021808

    Article  CAS  PubMed  Google Scholar 

  35. Handley MT, Carpanini SM, Mali GR, Sidjanin DJ, Aligianis IA, Jackson IJ, FitzPatrick DR (2015) Warburg micro syndrome is caused by RAB18 deficiency or dysregulation. Open Biol 5(6):150047. https://doi.org/10.1098/rsob.150047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gillingham AK, Sinka R, Torres IL, Lilley KS, Munro S (2014) Toward a comprehensive map of the effectors of rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malagon MM, Cruz D, Vazquez-Martinez R, Peinado JR, Anouar Y, Tonon MC, Vaudry H, Gracia-Navarro F et al (2005) Analysis of Rab18 and a new golgin in the secretory pathway. Ann N Y Acad Sci 1040:137–139. https://doi.org/10.1196/annals.1327.017

    Article  CAS  PubMed  Google Scholar 

  38. Vazquez-Martinez R, Cruz-Garcia D, Duran-Prado M, Peinado JR, Castano JP, Malagon MM (2007) Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic 8(7):867–882. https://doi.org/10.1111/j.1600-0854.2007.00570.x

    Article  CAS  PubMed  Google Scholar 

  39. Salloum S, Wang H, Ferguson C, Parton RG, Tai AW (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513. https://doi.org/10.1371/journal.ppat.1003513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang WC, Lin RJ, Liao CL, Lin YL (2014) Rab18 facilitates dengue virus infection by targeting fatty acid synthase to sites of viral replication. J Virol 88(12):6793–6804. https://doi.org/10.1128/jvi.00045-14

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chan SC, Lo SY, Liou JW, Lin MC, Syu CL, Lai MJ, Chen YC, Li HC (2011) Visualization of the structures of the hepatitis C virus replication complex. Biochem Biophys Res Commun 404(1):574–578. https://doi.org/10.1016/j.bbrc.2010.12.037

    Article  CAS  PubMed  Google Scholar 

  42. Hashim S, Mukherjee K, Raje M, Basu SK, Mukhopadhyay A (2000) Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J Biol Chem 275(21):16281–16288

    Article  CAS  PubMed  Google Scholar 

  43. Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462-463:166–174. https://doi.org/10.1016/j.virol.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  44. Feldmann A, Bekbulat F, Huesmann H, Ulbrich S, Tatzelt J, Behl C, Kern A (2017) The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochem Biophys Res Commun 486(3):738–743. https://doi.org/10.1016/j.bbrc.2017.03.112

    Article  CAS  PubMed  Google Scholar 

  45. Carpanini SM, McKie L, Thomson D, Wright AK, Gordon SL, Roche SL, Handley MT, Morrison H et al (2014) A novel mouse model of Warburg micro syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. Dis Model Mech 7(6):711–722. https://doi.org/10.1242/dmm.015222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng CY, Wu JC, Tsai JW, Nian FS, Wu PC, Kao LS, Fann MJ, Tsai SJ et al (2015) ENU mutagenesis identifies mice modeling Warburg micro syndrome with sensory axon degeneration caused by a deletion in Rab18. Exp Neurol 267:143–151. https://doi.org/10.1016/j.expneurol.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  47. Tai CY, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54(5):771–785. https://doi.org/10.1016/j.neuron.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  48. Liu YT, Nian FS, Chou WJ, Tai CY, Kwan SY, Chen C, Kuo PW, Lin PH et al (2016) PRRT2 mutations lead to neuronal dysfunction and neurodevelopmental defects. Oncotarget 7(26):39184–39196. https://doi.org/10.18632/oncotarget.9258

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jheng GW, Hur SS, Chang CM, Wu CC, Cheng JS, Lee HH, Chung BC, Wang YK et al (2018) Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem Biophys Res Commun 497(3):869–875. https://doi.org/10.1016/j.bbrc.2018.02.151

    Article  CAS  PubMed  Google Scholar 

  50. Chen JL, Chang CH, Tsai JW (2018) Gli2 rescues delays in brain development induced by Kif3a dysfunction. Cereb Cortex 29:751–764. https://doi.org/10.1093/cercor/bhx356

    Article  Google Scholar 

  51. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723–C742. https://doi.org/10.1152/ajpcell.00462.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitsumori K, Maita K, Shirasu Y (1981) An ultrastructural study of spinal nerve roots and dorsal root ganglia in aging rats with spontaneous radiculoneuropathy. Vet Pathol 18(6):714–726. https://doi.org/10.1177/030098588101800602

    Article  CAS  PubMed  Google Scholar 

  53. Samorajski T, Ordy JM, Rady-Reimer P (1968) Lipofuscin pigment accumulation in the nervous system of aging mice. Anat Rec 160(3):555–574. https://doi.org/10.1002/ar.1091600305

    Article  CAS  PubMed  Google Scholar 

  54. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11(2):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K (2013) Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta 1833(3):503–510. https://doi.org/10.1016/j.bbamcr.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  56. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. https://doi.org/10.1038/nrn3380

    Article  CAS  PubMed  Google Scholar 

  57. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, Bosco DA, Brown RH Jr, Brown H et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786. https://doi.org/10.1523/jneurosci.3463-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson MP, Tse TE, O’Quinn DB, Percival SM, Jaimes EA, Warnock DG, Shacka JJ (2014) Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2(1):20. https://doi.org/10.1186/2051-5960-2-20

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19(8):983–997. https://doi.org/10.1038/nm.3232

    Article  CAS  Google Scholar 

  60. Zhang L, Sheng R, Qin Z (2009) The lysosome and neurodegenerative diseases. Acta Biochim Biophys Sin Shanghai 41(6):437–445

    Article  CAS  PubMed  Google Scholar 

  61. Li JK, Fei P, Li Y, Huang QJ, Zhang Q, Zhang X, Rao YQ, Li J et al (2016) Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis. Sci Rep 6:26564. https://doi.org/10.1038/srep26564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Q, Sun X, Yue W, Lu T, Ruan Y, Chen T, Zhang D (2016) RAB18, a protein associated with Warburg micro syndrome, controls neuronal migration in the developing cerebral cortex. Mol Brain 9:19. https://doi.org/10.1186/s13041-016-0198-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Granger N (2011) Canine inherited motor and sensory neuropathies: an updated classification in 22 breeds and comparison to Charcot-Marie-tooth disease. Vet J 188(3):274–285. https://doi.org/10.1016/j.tvjl.2010.06.003

    Article  PubMed  Google Scholar 

  64. Mhlanga-Mutangadura T, Johnson GS, Schnabel RD, Taylor JF, Johnson GC, Katz ML, Shelton GD, Lever TE et al (2016) A mutation in the Warburg syndrome gene, RAB3GAP1, causes a similar syndrome with polyneuropathy and neuronal vacuolation in black Russian terrier dogs. Neurobiol Dis 86:75–85. https://doi.org/10.1016/j.nbd.2015.11.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Mu-Ming Poo (University of California, Berkeley), Dr. Chih-Chiang Chan (National Taiwan University), and Ms. Elise Shen (University of Texas, Austin) for helpful comments and suggestions. The authors also wish to thank the Instrumentation Resource Center, National Yang-Ming University, and the National RNAi Core Facility at Academia Sinica, Taiwan for their technical support.

Funding

This work was supported by the grants of Yen Tjing Ling Medical Foundation (CI-103-4), the Ministry of Science and Technology (NSC 101-2320-B-010-077-MY2, 102-2314-B-075-079, 103-2628-B-010-002-MY3, 104-2633-H-010-001, 104-2745-B-075-001, 105-2633-B-009-003, 106-2321-B-075-001, 106-2628-B-010-002-MY3, and 107-2321-B-075-001), Taipei Veterans General Hospital-University System of Taiwan (VGHUST106-G7-5-2), National Health Research Institutes (NHRI-EX103-10314NC), and Academia Sinica, Taiwan (AS-104-TP-B09 and 2396-105-0100) to JWT; and Taiwan National Science Council (NSC 102-2314-B-075-005-MY3), Taipei Veterans General Hospital (V103E9-004 and V102C-173), and the Ministry of Education Taiwan, Aim for the Top University Plan to CJH. This work is also supported by the Development and Construction Program of NYMU School of Medicine (107F-M01-0502) and the Brain Research Center, NYMU through the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: JWT, CJH, LSK, MJF, and CYT. Project supervision: JWT. Data collection: FSN, LLL, CYC, PCW, YTL, BSR, and CYT. Data analysis and interpretation: FSN, LLL, JWT, MJF, and LSK. Drafting the article: FSN and JWT. Final approval of the version to be published: all authors.

Corresponding author

Correspondence to Jin-Wu Tsai.

Ethics declarations

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Figure S1

Rab18 expression in primary cortical neurons from fromRab18−/−mice. Primary cortical neurons was prepared from E16.5–18.5 embryos of Rab18+/+, Rab18+/- and Rab18−/− mice. Rab18 expression was determined using western blotting. Error bar represent mean ± SEM; n = 2. (PNG 328 kb)

High resolution image (TIF 505 kb)

Figure S2

Rab18-associated vesicles are actively transported in PC12 cells. (A) A NGF-differentiated PC12 cell expressing EGFP-Rab18. Rab18 was distributed in vesicle-like structures along the neurite. Scale bar: 10 μm. The dashed box indicated the region of (B) and (C). (B) Time-lapse imaging of vesicle transport. Arrow indicated a Rab18-associated vesicle moving in retrograde direction. Time was indicated in minute:second. (C) The kymograph constructed from individual time-lapse images of the region in (B) through time. Dashed line arrows indicated Rab18-associated vesicles moving in different directions. Scale bar: 5 μm. (PNG 2292 kb)

High resolution image (TIF 4227 kb)

Figure S3

Knockdown of Rab18 expression in primary cortical neurons using shRNA. Mouse cortical neuronal culture was infected with lentivirus encoding Rab18 shRNA or control sequence (shCtrl). Two Rab18 shRNA sequences (shRab18–1981, shRab18–7028) targeting different Rab18 mRNA regions effectively knocked down Rab18 expression 5 days after infection. Error bar represent mean ± SEM; n = 7. (PNG 647 kb)

High resolution image (TIF 914 kb)

Supplementary Video 1

Rab18-associated vesicles transported bi-directionally within the neurite of cultured neurons (AVI 2503 kb)

Supplementary Video 2

Rab18-associated vesicles transported bi-directionally within the neurite of PC12 cells (AVI 3590 kb)

Supplementary Video 3

Lysosomal trafficking in wild type neurons. (AVI 3088 kb)

Supplementary Video 4

Lysosomal trafficking in Rab18−/− neurons. (AVI 2697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nian, FS., Li, LL., Cheng, CY. et al. Rab18 Collaborates with Rab7 to Modulate Lysosomal and Autophagy Activities in the Nervous System: an Overlapping Mechanism for Warburg Micro Syndrome and Charcot-Marie-Tooth Neuropathy Type 2B. Mol Neurobiol 56, 6095–6105 (2019). https://doi.org/10.1007/s12035-019-1471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1471-z

Keywords

Navigation