Skip to main content

Advertisement

Log in

Attenuation of Experimental Autoimmune Encephalomyelitis in a Common Marmoset Model by Dendritic Cell-Modulating Anti-ICAM-1 Antibody, MD-3

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

MD-3 is a novel anti-human ICAM-1 monoclonal antibody that induces T cell tolerance in humanized mice via modulation of dendritic cell differentiation and efficiently suppresses the development of collagen-induced arthritis. This effect has also been observed in xenograft rejection in nonhuman primates, where grafts survived for more than 2.5 years following MD-3 administration. Here, we show that MD-3 can attenuate experimental autoimmune encephalomyelitis (EAE) that was induced in common marmoset monkeys by immunization with human myelin oligodendrocyte glycoproteins. MD-3 administration was initiated 1 week after immunization and efficiently delayed the development of EAE phenotypes, although the disease was not completely prevented. Based on the results of histopathological examination, MD-3 treatment greatly suppressed total inflammation with respect to demyelination, as well as T cell and microglial infiltration in the brain. However, the antibody response against myelin oligodendrocyte glycoprotein was not suppressed with this treatment protocol. These observations suggest that the MD-3 antibody has beneficial effects on the treatment of EAE via the suppression of T cell-mediated cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  Google Scholar 

  2. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83:278–286

    Article  Google Scholar 

  3. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N et al (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  Google Scholar 

  4. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179:973–984

    Article  CAS  Google Scholar 

  5. Farooqi N, Gran B, Constantinescu CS (2010) Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 115:829–844

    Article  CAS  Google Scholar 

  6. Constantinescu CS, Farooqi N, O'Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

    Article  CAS  Google Scholar 

  7. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    Article  CAS  Google Scholar 

  8. Quintana FJ, Patel B, Yeste A, Nyirenda M, Kenison J, Rahbari R, Fetco D, Hussain M et al (2014) Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology 83:2219–2226

    Article  CAS  Google Scholar 

  9. Vanderlugt CL, Neville KL, Nikcevich KM, Eagar TN, Bluestone JA, Miller SD (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 164:670–678

    Article  CAS  Google Scholar 

  10. Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, Wolcott KM, DeGraba TJ et al (2001) Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 32:2665–2674

    Article  CAS  Google Scholar 

  11. Kavanaugh AF, Davis LS, Nichols LA, Norris SH, Rothlein R, Scharschmidt LA, Lipsky PE (1994) Treatment of refractory rheumatoid arthritis with a monoclonal antibody to intercellular adhesion molecule 1. Arthritis Rheum 37:992–999

    Article  CAS  Google Scholar 

  12. Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L et al (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation 67:729–736

    Article  CAS  Google Scholar 

  13. Vuorte J, Lindsberg PJ, Kaste M, Meri S, Jansson SE, Rothlein R, Repo H (1999) Anti-ICAM-1 monoclonal antibody R6.5 (Enlimomab) promotes activation of neutrophils in whole blood. J Immunol 162:2353–2357

    CAS  PubMed  Google Scholar 

  14. Jung KC, Park CG, Jeon YK, Park HJ, Ban YL, Min HS, Kim EJ, Kim JH et al (2011) In situ induction of dendritic cell-based T cell tolerance in humanized mice and nonhuman primates. J Exp Med 208:2477–2488

    Article  CAS  Google Scholar 

  15. Lee JI, Kim J, Choi YJ, Park HJ, Park HJ, Wi HJ, Yoon S, Shin JS, Park JK, Jung KC, Lee EB, Kang HJ, Hwang ES, Kim SJ, Park CG, Park SH (2018) The effect of epitope-based ligation of ICAM-1 on survival and retransplantation of pig islets in nonhuman primates. Xenotransplantation 25:e12362

    Article  Google Scholar 

  16. Lee JI, Park HJ, Park HJ, Choi YJ, Kim J, Park JK, Jung KC, Hwang ES et al (2018) Epitope-based ligation of ICAM-1: Therapeutic target for protection against the development of rheumatoid arthritis. Biochem Biophys Res Commun 500:450–455

    Article  CAS  Google Scholar 

  17. Kap YS, Jagessar SA, van Driel N, Blezer E, Bauer J, van Meurs M, Smith P, Laman JD et al (2011) Effects of early IL-17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J NeuroImmune Pharmacol 6:341–353

    Article  Google Scholar 

  18. Laman JD, ’t Hart BA, Brok H, Meurs M, Schellekens MM, Kasran A, Boon L, Bauer J et al (2002) Protection of marmoset monkeys against EAE by treatment with a murine antibody blocking CD40 (mu5D12). Eur J Immunol 32:2218–2228

    Article  CAS  Google Scholar 

  19. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  Google Scholar 

  20. Fujii Y, Kitaura K, Matsutani T, Shirai K, Suzuki S, Takasaki T, Kumagai K, Kametani Y et al (2013) Immune-related gene expression profile in laboratory common marmosets assessed by an accurate quantitative real-time PCR using selected reference genes. PLoS One 8:e56296

    Article  CAS  Google Scholar 

  21. Jagessar SA, Heijmans N, Blezer EL, Bauer J, Weissert R, ’t Hart BA (2015) Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant. J Neuroinflammation 12:169

    Article  Google Scholar 

  22. Jagessar SA, Vierboom M, Blezer EL, Bauer J, Hart BA, Kap YS (2013) Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Exp Anim 62:159–171

    Article  CAS  Google Scholar 

  23. Genain CP, Roberts T, Davis RL, Nguyen MH, Uccelli A, Faulds D, Li Y, Hedgpeth J et al (1995) Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor. Proc Natl Acad Sci U S A 92:3601–3605

    Article  CAS  Google Scholar 

  24. Gobel K, Ruck T, Meuth SG (2018) Cytokine signaling in multiple sclerosis: lost in translation. Mult Scler 24:432–439

    Article  Google Scholar 

  25. ’t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125

    Article  Google Scholar 

  26. de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S et al (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    Article  Google Scholar 

  27. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95

    Article  CAS  Google Scholar 

  28. Brok HP, Uccelli A, Kerlero De Rosbo N, Bontrop RE, Roccatagliata L, de Groot NG, Capello E, Laman JD et al (2000) Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T cell epitope pMOG24-36 is presented by a monomorphic MHC class II molecule. J Immunol 165:1093–1101

    Article  CAS  Google Scholar 

  29. Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, Strijkers GJ, Laman JD, Hintzen RQ et al (2008) Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells. J Immunol 180:1326–1337

    Article  CAS  Google Scholar 

  30. Genain CP, Nguyen MH, Letvin NL, Pearl R, Davis RL, Adelman M, Lees MB, Linington C et al (1995) Antibody facilitation of multiple sclerosis-like lesions in a nonhuman primate. J Clin Invest 96:2966–2974

    Article  CAS  Google Scholar 

  31. Jagessar SA, Kap YS, Heijmans N, van Driel N, van Straalen L, Bajramovic JJ, Brok HP, Blezer EL et al (2010) Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete freund adjuvant. J Neuropathol Exp Neurol 69:372–385

    Article  CAS  Google Scholar 

  32. Kelsoe G (2003) Therapeutic CD154 antibody for lupus: promise for the future? J Clin Invest 112:1480–1482

    Article  CAS  Google Scholar 

  33. Boon L, Brok HP, Bauer J, Ortiz-Buijsse A, Schellekens MM, Ramdien-Murli S, Blezer E, van Meurs M et al (2001) Prevention of experimental autoimmune encephalomyelitis in the common marmoset (Callithrix jacchus) using a chimeric antagonist monoclonal antibody against human CD40 is associated with altered B cell responses. J Immunol 167:2942–2949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks are due to professor Seong Hoe Park of Seoul National University College of Medicine for his innumerable contributions, including many helpful discussions and continued advice during all experimental processes as well as reading the entire manuscript and providing comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Cheon Jung.

Ethics declarations

Conflict of Interest

All authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, ST., Park, S.P., Park, HJ. et al. Attenuation of Experimental Autoimmune Encephalomyelitis in a Common Marmoset Model by Dendritic Cell-Modulating Anti-ICAM-1 Antibody, MD-3. Mol Neurobiol 56, 5136–5145 (2019). https://doi.org/10.1007/s12035-018-1438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1438-5

Keywords

Navigation