Skip to main content

Advertisement

Log in

The Role of Deimination in Regenerative Reprogramming of Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurons from the adult central nervous system (CNS) demonstrate limited mRNA transport and localized protein synthesis versus developing neurons, correlating with lower regenerative capacity. We found that deimination (posttranslational conversion of protein-bound arginine into citrulline) undergoes upregulation during early neuronal development while declining to a low basal level in adults. This modification is associated with neuronal arborization from amphibians to mammals. The mRNA-binding proteins (ANP32a, REF), deiminated in neurons, have been implicated in local protein synthesis. Overexpression of the deiminating cytosolic enzyme peptidyl arginine deiminase 2 in nervous systems results in increased neuronal transport and neurite outgrowth. We further demonstrate that enriching deiminated proteins rescues transport deficiencies both in primary neurons and mouse optic nerve even in the presence of pharmacological transport blockers. We conclude that deimination promotes neuronal outgrowth via enhanced transport and local protein synthesis and represents a new avenue for neuronal regeneration in the adult CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730. https://doi.org/10.1016/j.cell.2009.01.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim S, Martin KC (2015) Neuron-wide RNA transport combines with netrin-mediated local translation to spatially regulate the synaptic proteome. eLife 4:4. https://doi.org/10.7554/eLife.04158

    Article  CAS  Google Scholar 

  3. Kalinski AL, Sachdeva R, Gomes C, Lee SJ, Shah Z, Houle JD, Twiss JL (2015) mRNAs and protein synthetic machinery localize into regenerating spinal cord axons when they are provided a substrate that supports growth. J Neurosci 35(28):10357–10370. https://doi.org/10.1523/JNEUROSCI.1249-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480(7377):372–375. https://doi.org/10.1038/nature10594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2(3):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kar AN, MacGibeny MA, Gervasi NM, Gioio AE, Kaplan BB (2013) Intra-axonal synthesis of eukaryotic translation initiation factors regulates local protein synthesis and axon growth in rat sympathetic neurons. J Neurosci 33(17):7165–7174. https://doi.org/10.1523/JNEUROSCI.2040-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friede RL, Bischhausen R (1980) The fine structure of stumps of transected nerve fibers in subserial sections. J Neurol Sci 44(2–3):181–203

    Article  CAS  PubMed  Google Scholar 

  9. Han SB, Kim H, Skuba A, Tessler A, Ferguson T, Son YJ (2012) Sensory axon regeneration: a review from an in vivo imaging perspective. Experimental Neurobiology 21(3):83–93. https://doi.org/10.5607/en.2012.21.3.83

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liuzzi FJ, Tedeschi B (1991) Peripheral nerve regeneration. Neurosurg Clin N Am 2(1):31–42

    Article  CAS  PubMed  Google Scholar 

  11. Windle WF (1980) Inhibition of regeneration of severed axons in the spinal cord. Exp Neurol 69(1):209–211

    Article  CAS  PubMed  Google Scholar 

  12. Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27(34):9169–9180. https://doi.org/10.1523/JNEUROSCI.0612-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25(2):331–342. https://doi.org/10.1523/JNEUROSCI.3073-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25(11):1106–1118. https://doi.org/10.1002/bies.10357

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya SK, Crabb JS, Bonilha VL, Gu X, Takahara H, Crabb JW (2006) Proteomics implicates peptidyl arginine deiminase 2 and optic nerve citrullination in glaucoma pathogenesis. Invest Ophthalmol Vis Sci 47(6):2508–2514

    Article  PubMed  Google Scholar 

  16. Enriquez-Algeciras M, Ding D, Chou TH, Wang J, Padgett KR, Porciatti V, Bhattacharya SK (2011) Evaluation of a transgenic mice model of multiple sclerosis with non invasive methods. Invest Ophthalmol Vis Sci 52:2405–2411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattacharya SK (2009) Retinal deimination in aging and disease. IUBMB Life 61(5):504–509

    Article  CAS  PubMed  Google Scholar 

  18. Ding D, Enriquez-Algeciras M, Dave KR, Perez-Pinzon M, Bhattacharya SK (2012) The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis. EMBO Rep 13(3):230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moscarello MA, Wood DD, Ackerley C, Boulias C (1994) Myelin in multiple sclerosis is developmentally immature. J Clin Invest 94(1):146–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattacharya SK, Sinicrope B, Rayborn ME, Hollyfield JG, Bonilha VL (2008) Age-related reduction in retinal deimination levels in the F344BN rat. Aging Cell 7(3):441–444. https://doi.org/10.1111/j.1474-9726.2008.00376.x

    Article  CAS  PubMed  Google Scholar 

  21. Enriquez-Algeciras M, Ding D, Mastronardi FG, Marc RE, Porciatti V, Bhattacharya SK (2013) Deimination restores inner retinal visual function in murine demyelinating disease. J Clin Invest 123(2):646–656

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Udin SB (2005) Chronic melatonin and binocular plasticity in Xenopus frogs. Gen Comp Endocrinol 142(3):274–279. https://doi.org/10.1016/j.ygcen.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Udin SB, Fisher MD (1985) The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum. J Comparative Neurology 232(1):25–35. https://doi.org/10.1002/cne.902320103

    Article  CAS  Google Scholar 

  24. Sim ME, Lyoo IK, Streeter CC, Covell J, Sarid-Segal O, Ciraulo DA, Kim MJ, Kaufman MJ et al (2007) Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology: Official Publication Am College Neuropsychopharmacology 32(10):2229–2237. https://doi.org/10.1038/sj.npp.1301346

    Article  CAS  Google Scholar 

  25. Herold A, Suyama M, Rodrigues JP, Braun IC, Kutay U, Carmo-Fonseca M, Bork P, Izaurralde E (2000) TAP (NXF1) belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Mol Cell Biol 20(23):8996–9008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan MZ, Vaidya A, Meucci O (2011) CXCL12-mediated regulation of ANP32A/Lanp, a component of the inhibitor of histone acetyl transferase (INHAT) complex, in cortical neurons. J Neuroimmune Pharmacology : Official J Soc NeuroImmune Pharmacology 6(1):163–170. https://doi.org/10.1007/s11481-010-9228-5

    Article  Google Scholar 

  27. Cohen MS, Bas Orth C, Kim HJ, Jeon NL, Jaffrey SR (2011) Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites. Proc Natl Acad Sci U S A 108(27):11246–11251. https://doi.org/10.1073/pnas.1012401108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Corral-Debrinski M (2007) mRNA specific subcellular localization represents a crucial step for fine-tuning of gene expression in mammalian cells. Biochim Biophys Acta 1773(4):473–475

    Article  CAS  PubMed  Google Scholar 

  29. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J, Lin JQ, Amieux PS, Holt CE (2016) Dynamic axonal translation in developing and mature visual circuits. Cell 166(1):181–192. https://doi.org/10.1016/j.cell.2016.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanai A, Hiruma H, Katakura T, Sase S, Kawakami T, Hoka S (2001) Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons. Anesthesiology 95(3):675–680

    Article  CAS  PubMed  Google Scholar 

  31. LaPointe NE, Morfini G, Brady ST, Feinstein SC, Wilson L, Jordan MA (2013) Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology 37:231–239. https://doi.org/10.1016/j.neuro.2013.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chou TH, Park KK, Luo X, Porciatti V (2013) Retrograde signaling in the optic nerve is necessary for electrical responsiveness of retinal ganglion cells. Invest Ophthalmol Vis Sci 54(2):1236–1243. https://doi.org/10.1167/iovs.12-11188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008) Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci 11(6):721–728. https://doi.org/10.1038/nn.2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36(3):315–324. https://doi.org/10.1002/jnr.490360309

    Article  CAS  PubMed  Google Scholar 

  35. Johnson RS, Roder JC, Riordan JR (1995) Over-expression of the DM-20 myelin proteolipid causes central nervous system demyelination in transgenic mice. J Neurochem 64(3):967–976

    Article  CAS  PubMed  Google Scholar 

  36. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437(7060):894–897

    Article  CAS  PubMed  Google Scholar 

  37. Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ et al (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489(7414):150–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bassell GJ, Kelic S (2004) Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr Opin Neurobiol 14(5):574–581. https://doi.org/10.1016/j.conb.2004.08.010

    Article  CAS  PubMed  Google Scholar 

  39. Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM et al (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18(1):251–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9(12):971–980. https://doi.org/10.1038/nrm2548

    Article  CAS  PubMed  Google Scholar 

  41. Doron-Mandel E, Fainzilber M, Terenzio M (2015) Growth control mechanisms in neuronal regeneration. FEBS Lett 589(14):1669–1677. https://doi.org/10.1016/j.febslet.2015.04.046

    Article  CAS  PubMed  Google Scholar 

  42. Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152

    Article  PubMed  Google Scholar 

  43. Yoo S, van Niekerk EA, Merianda TT, Twiss JL (2010) Dynamics of axonal mRNA transport and implications for peripheral nerve regeneration. Exp Neurol 223(1):19–27. https://doi.org/10.1016/j.expneurol.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  44. Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol 67(9):1148–1165. https://doi.org/10.1002/dneu.20515

    Article  CAS  PubMed  Google Scholar 

  45. Encalada SE, Goldstein LS (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 43:141–169. https://doi.org/10.1146/annurev-biophys-051013-022746

    Article  CAS  PubMed  Google Scholar 

  46. Crish SD, Sappington RM, Inman DM, Horner PJ, Calkins DJ (2010) Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc Natl Acad Sci U S A 107(11):5196–5201. https://doi.org/10.1073/pnas.0913141107

    Article  PubMed  PubMed Central  Google Scholar 

  47. LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87(2):440–451. https://doi.org/10.1002/jnr.21850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Koch JC, Bitow F, Haack J, d’Hedouville Z, Zhang JN, Tonges L, Michel U, Oliveira LM et al (2015) Alpha-synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death Dis 6:e1811. https://doi.org/10.1038/cddis.2015.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roy S, Zhang B, Lee VM, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 109(1):5–13. https://doi.org/10.1007/s00401-004-0952-x

    Article  PubMed  Google Scholar 

  50. Winans AM, Collins SR, Meyer T (2016) Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation. eLife 5:5. https://doi.org/10.7554/eLife.12387

    Article  CAS  Google Scholar 

  51. Nieuwkoop PD, Faber J (1967) A normal table of Xenopus laevis (Daudin). 2nd edn. North-Holland Publishing Company, Amsterdam

  52. Kim EJ, Raval AP, Perez-Pinzon MA (2008) Preconditioning mediated by sublethal oxygen-glucose deprivation-induced cyclooxygenase-2 expression via the signal transducers and activators of transcription 3 phosphorylation. J Cereb Blood Flow Metab 28(7):1329–1340. https://doi.org/10.1038/jcbfm.2008.26

    Article  CAS  PubMed  Google Scholar 

  53. Thompson JW, Dave KR, Saul I, Narayanan SV, Perez-Pinzon MA (2013) Epsilon PKC increases brain mitochondrial SIRT1 protein levels via heat shock protein 90 following ischemic preconditioning in rats. PLoS One 8(9):e75753. https://doi.org/10.1371/journal.pone.0075753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Porciatti V (2007) The mouse pattern electroretinogram. Doc Ophthalmol 115(3):145–153. https://doi.org/10.1007/s10633-007-9059-8

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patel N, Solanki E, Picciani R, Cavett V, Caldwell-Busby JA, Bhattacharya SK (2008) Strategies to recover proteins from ocular tissues for proteomics. Proteomics 8(5):1055–1070

    Article  CAS  PubMed  Google Scholar 

  56. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  57. Aribindi K, Guerra Y, Lee RK, Bhattacharya SK (2013) Comparative phospholipid profiles of control and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 54(4):3037–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Crane AM, Hua HU, Coggin AD, Gugiu BG, Lam BL, Bhattacharya SK (2012) Mass spectrometric analyses of phosphatidylcholines in alkali-exposed corneal tissue. Invest Ophthalmol Vis Sci 53(11):7122–7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aribindi K, Guerra Y, Piqueras Mdel C, Banta JT, Lee RK, Bhattacharya SK (2013) Cholesterol and glycosphingolipids of human trabecular meshwork and aqueous humor: comparative profiles from control and glaucomatous donors. Curr Eye Res 38(10):1017–1026

    Article  CAS  PubMed  Google Scholar 

  60. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83(3):940–949. https://doi.org/10.1021/ac102598u

    Article  CAS  PubMed  Google Scholar 

  61. Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, Slee E, Lu X et al (2008) RPLC-ion-trap-FTMS method for lipid profiling of plasma: method validation and application to p53 mutant mouse model. J Proteome Res 7(11):4982–4991. https://doi.org/10.1021/pr800373m

    Article  CAS  PubMed  Google Scholar 

  62. Josef Ruzicka, Kevin J. McHale, David Peake (2014) Data acquisition parameters optimization of quadrupole orbitrap for global lipidomics on LC-MS/MS time frame. Paper presented at the American Society for Mass Spectrometry, Baltimore, Maryland

  63. Edwards G, Aribindi K, Guerra Y, Lee RK, Bhattacharya SK (2014) Phospholipid profiles of control and glaucomatous human aqueous humor. Biochimie 101:232–247. https://doi.org/10.1016/j.biochi.2014.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2924–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Edwards G, Aribindi K, Guerra Y, Bhattacharya SK (2014) Sphingolipids and ceramides of mouse aqueous humor: comparative profiles from normotensive and hypertensive DBA/2J mice. Biochimie 105:99–109. https://doi.org/10.1016/j.biochi.2014.06.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Trzeciecka for providing part of the neurons. We thank G. Gaidosh for assistance with microscopy. We thank Dr. K. Park for the critical comments on the manuscript.

Funding

This work was partially supported by an unrestricted grant from Research to Prevent Blindness to the University of Miami, DoD grant W81XWH-16-1-0715, and NIH grants P30 EY014801, EY014957, EY019077, NS034773, and U01EY027257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy K. Bhattacharya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 88 kb)

Movie 1

(AVI 5044 kb)

Movie 2

(AVI 9288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Enriquez-Algeciras, M., Valdivia, A.O. et al. The Role of Deimination in Regenerative Reprogramming of Neurons. Mol Neurobiol 56, 2618–2639 (2019). https://doi.org/10.1007/s12035-018-1262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1262-y

Keywords

Navigation