Skip to main content

Advertisement

Log in

Intranasal Delivery of pGDNF DNA Nanoparticles Provides Neuroprotection in the Rat 6-Hydroxydopamine Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glial cell line-derived neurotrophic factor (GDNF) gene therapy could offer a disease-modifying treatment for Parkinson’s disease (PD). Here, we report that plasmid DNA nanoparticles (NPs) encoding human GDNF administered intranasally to rats induce transgene expression in the brain and protect dopamine neurons in a model of PD. To first test whether intranasal administration could transfect cells in the brain, rats were sacrificed 1 week after intranasal pGDNF NPs or the naked plasmid. GDNF ELISA revealed significant increases in GDNF expression throughout the brain for both treatments. To assess whether expression was sufficient to protect dopamine neurons, naked pGDNF and pGDNF DNA NPs were given intranasally 1 week before a unilateral 6-hydroxydopamine lesion in a rat model of PD. Three to four weeks after the lesion, amphetamine-induced rotational behavior was reduced, and dopaminergic fiber density and cell counts in the lesioned substantia nigra and nerve terminal density in the lesioned striatum were significantly preserved in rats given intranasal pGDNF. The NPs afforded a greater level of neuroprotection than the naked plasmid. These results provide proof-of-principle that intranasal administration of pGDNF DNA NPs can offer a non-invasive, non-viral gene therapy approach for early-stage PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130–1132

    Article  CAS  PubMed  Google Scholar 

  2. Kirik D, Georgievska B, Bjorklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7(2):105–110. https://doi.org/10.1038/nn1175

    Article  CAS  PubMed  Google Scholar 

  3. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373(6512):335–339. https://doi.org/10.1038/373335a0

    Article  CAS  PubMed  Google Scholar 

  4. Kearns CM, Gash DM (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 672(1–2):104–111

    Article  CAS  PubMed  Google Scholar 

  5. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11(7):703–704. https://doi.org/10.1038/nm0705-703

    Article  CAS  PubMed  Google Scholar 

  6. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 102(2):216–222. https://doi.org/10.3171/jns.2005.102.2.0216

    Article  CAS  PubMed  Google Scholar 

  7. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, Lozano AM, Penn RD et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60(1):69–73

    Article  CAS  PubMed  Google Scholar 

  8. Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589–595. https://doi.org/10.1038/nm850

    Article  CAS  PubMed  Google Scholar 

  9. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, Brooks DJ, Hotton G et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466. https://doi.org/10.1002/ana.20737

    Article  CAS  PubMed  Google Scholar 

  10. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57(2):298–302. https://doi.org/10.1002/ana.20374

    Article  CAS  PubMed  Google Scholar 

  11. Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, Taylor R, Cahn-Weiner DA et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408. https://doi.org/10.1016/s1474-4422(08)70065-6

    Article  PubMed  Google Scholar 

  12. Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, Turner DA, Stacy M et al (2013) Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80(18):1698–1701. https://doi.org/10.1212/WNL.0b013e3182904faa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stroke NIoNDa (2012) AAV2-GDNF for advanced Parkinson’s disease. National Library of Medicine (US), Bethesda (MD) https://clinicaltrials.gov/ct2/show/NCT01621581. 2016

    Google Scholar 

  14. Trust NBN (2013) An extension study to assess the safety and efficacy of intermittent bilateral intraputamenal glial cell line-derived neurotrophic factor (GDNF) infusions administered via onvection enhanced delivery (CED) in subjects with Parkinson’s disease. European Medicines Agency. https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-001881-40/GB. 2016

  15. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496. https://doi.org/10.1016/j.neuroscience.2004.05.029

    Article  CAS  PubMed  Google Scholar 

  16. Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH 2nd (2008) Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience 152(3):785–797. https://doi.org/10.1016/j.neuroscience.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  17. Dhuria SV, Hanson LR, Frey WH 2nd (2010) Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 99(4):1654–1673. https://doi.org/10.1002/jps.21924

    Article  CAS  PubMed  Google Scholar 

  18. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL (2010) Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 99(4):1745–1761. https://doi.org/10.1002/jps.21939

    Article  CAS  PubMed  Google Scholar 

  19. Kim ID, Shin JH, Kim SW, Choi S, Ahn J, Han PL, Park JS, Lee JK (2012) Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol Ther 20(4):829–839. https://doi.org/10.1038/mt.2011.291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang Y, Wei N, Zhu J, Zhai D, Wu L, Chen M, Xu G, Liu X (2012) A new approach with less damage: intranasal delivery of tetracycline-inducible replication-defective herpes simplex virus type-1 vector to brain. Neuroscience 201:96–104. https://doi.org/10.1016/j.neuroscience.2011.10.043

    Article  CAS  PubMed  Google Scholar 

  21. Harmon BT, Aly AE, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL (2014) Intranasal administration of plasmid DNA nanoparticles yields successful transfection and expression of a reporter protein in rat brain. Gene Ther 21(5):514–521. https://doi.org/10.1038/gt.2014.28

    Article  CAS  PubMed  Google Scholar 

  22. Bender TS, Migliore MM, Campbell RB, John Gatley S, Waszczak BL (2015) Intranasal administration of glial-derived neurotrophic factor (GDNF) rapidly and significantly increases whole-brain GDNF level in rats. Neuroscience 303:569–576. https://doi.org/10.1016/j.neuroscience.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  23. Malerba F, Paoletti F, Capsoni S, Cattaneo A (2011) Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 8(10):1277–1296. https://doi.org/10.1517/17425247.2011.588204

    Article  CAS  PubMed  Google Scholar 

  24. Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628. https://doi.org/10.1016/j.addr.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  25. Aly AE, Waszczak BL (2015) Intranasal gene delivery for treating Parkinson’s disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv:1–19

  26. Li Y, Field PM, Raisman G (2005) Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia 52(3):245–251. https://doi.org/10.1002/glia.20241

    Article  PubMed  Google Scholar 

  27. Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, Bakker EN (2017) Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab 37(4):1374–1385. https://doi.org/10.1177/0271678x16655550

    Article  PubMed  Google Scholar 

  28. Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG (2015) Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 35(3):371–381. https://doi.org/10.1038/jcbfm.2014.215

    Article  CAS  PubMed  Google Scholar 

  29. Migliore MM, Ortiz R, Dye S, Campbell RB, Amiji MM, Waszczak BL (2014) Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neuroscience 274:11–23. https://doi.org/10.1016/j.neuroscience.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  30. Thorne RG, Frey WH 2nd (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40(12):907–946. https://doi.org/10.2165/00003088-200140120-00003

    Article  CAS  PubMed  Google Scholar 

  31. Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, Kowalczyk TH, Padegimas L et al (2009) Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 17(4):641–650. https://doi.org/10.1038/mt.2009.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu G, Li D, Pasumarthy MK, Kowalczyk TH, Gedeon CR, Hyatt SL, Payne JM, Miller TJ et al (2003) Nanoparticles of compacted DNA transfect postmitotic cells. J Biol Chem 278(35):32578–32586. https://doi.org/10.1074/jbc.M305776200

    Article  CAS  PubMed  Google Scholar 

  33. Fink TL, Klepcyk PJ, Oette SM, Gedeon CR, Hyatt SL, Kowalczyk TH, Moen RC, Cooper MJ (2006) Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther 13(13):1048–1051

    Article  CAS  PubMed  Google Scholar 

  34. Ziady AG, Gedeon CR, Miller T, Quan W, Payne JM, Hyatt SL, Fink TL, Muhammad O et al (2003) Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 8(6):936–947

    Article  CAS  PubMed  Google Scholar 

  35. Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI (2010) Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 24(4):1178–1191. https://doi.org/10.1096/fj.09-139147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1:e38. https://doi.org/10.1371/journal.pone.0000038

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yurek DM, Fletcher AM, McShane M, Kowalczyk TH, Padegimas L, Weatherspoon MR, Kaytor MD, Cooper MJ et al (2011) DNA nanoparticles: detection of long-term transgene activity in brain using bioluminescence imaging. Mol Imaging 10(5):327–339. https://doi.org/10.2310/7290.2010.00053

    Article  CAS  PubMed  Google Scholar 

  38. Fletcher AM, Kowalczyk TH, Padegimas L, Cooper MJ, Yurek DM (2011) Transgene expression in the striatum following intracerebral injections of DNA nanoparticles encoding for human glial cell line-derived neurotrophic factor. Neuroscience 194:220–226. https://doi.org/10.1016/j.neuroscience.2011.07.072

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Geng Z, Zhao L, Huang SH, Sheng AL, Chen ZY (2008) GDNF isoform affects intracellular trafficking and secretion of GDNF in neuronal cells. Brain Res 1226:1–7. https://doi.org/10.1016/j.brainres.2008.05.087

    Article  CAS  PubMed  Google Scholar 

  40. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

    Article  CAS  PubMed  Google Scholar 

  41. Ungerstedt U (1973) Selective lesions of central catecholamine pathways: application in functional studies. Neurosci Res (N Y) 5:73–96

    CAS  Google Scholar 

  42. Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–494

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang Z, Miyoshi Y, Lapchak PA, Collins F, Hilt D, Lebel C, Kryscio R, Gash DM (1997) Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J Pharmacol Exp Ther 282(3):1396–1401

    CAS  PubMed  Google Scholar 

  44. Manfredsson FP, Tumer N, Erdos B, Landa T, Broxson CS, Sullivan LF, Rising AC, Foust KD et al (2009) Nigrostriatal rAAV-mediated GDNF overexpression induces robust weight loss in a rat model of age-related obesity. Mol Ther 17(6):980–991. https://doi.org/10.1038/mt.2009.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olanow CW, Bartus RT, Volpicelli-Daley LA, Kordower JH (2015) Trophic factors for Parkinson’s disease: to live or let die. Mov Disord 30(13):1715–1724. https://doi.org/10.1002/mds.26426

    Article  PubMed  Google Scholar 

  46. Yurek D, Hasselrot U, Sesenoglu-Laird O, Padegimas L, Cooper M (2017) Intracerebral injections of DNA nanoparticles encoding for a therapeutic gene provide partial neuroprotection in an animal model of neurodegeneration. Nanomedicine 13(7):2209–2217. https://doi.org/10.1016/j.nano.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  47. Okragly AJ, Haak-Frendscho M (1997) An acid-treatment method for the enhanced detection of GDNF in biological samples. Exp Neurol 145(2 Pt 1):592–596. https://doi.org/10.1006/exnr.1997.6500

    Article  CAS  PubMed  Google Scholar 

  48. Lin LF, Zhang TJ, Collins F, Armes LG (1994) Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. J Neurochem 63(2):758–768

    Article  CAS  PubMed  Google Scholar 

  49. Georgievska B, Kirik D, Bjorklund A (2002) Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp Neurol 177(2):461–474

    Article  CAS  PubMed  Google Scholar 

  50. Rosenblad C, Georgievska B, Kirik D (2003) Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J Neurosci 17(2):260–270

    Article  PubMed  Google Scholar 

  51. Georgievska B, Kirik D, Bjorklund A (2004) Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 24(29):6437–6445. https://doi.org/10.1523/jneurosci.1122-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, Mandel RJ, Annett L et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25(4):769–777. https://doi.org/10.1523/jneurosci.4421-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Redmond DE Jr, McEntire CR, Kingsbery JP, Leranth C, Elsworth JD, Bjugstad KB, Roth RH, Samulski RJ et al (2013) Comparison of fetal mesencephalic grafts, AAV-delivered GDNF, and both combined in an MPTP-induced nonhuman primate Parkinson’s model. Mol Ther 21(12):2160–2168. https://doi.org/10.1038/mt.2013.180

    Article  CAS  PubMed  Google Scholar 

  54. Kozlowski DA, Miljan EA, Bremer EG, Harrod CG, Gerin C, Connor B, George D, Larson B et al (2004) Quantitative analyses of GFRalpha-1 and GFRalpha-2 mRNAs and tyrosine hydroxylase protein in the nigrostriatal system reveal bilateral compensatory changes following unilateral 6-OHDA lesions in the rat. Brain Res 1016(2):170–181. https://doi.org/10.1016/j.brainres.2004.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the expertise and technical assistance of Alexandra Christodoulou in performing the BIOQUANT analyses of microscopic images.

Funding

This research was supported in part by the Michael J. Fox Foundation for Parkinson’s Research and a Northeastern University Tier 1 grant (BLW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara L. Waszczak.

Ethics declarations

Declaration of Interests

AEA, BTH, and BLW declare no conflict of interest. MJC and OSL are current employees of Copernicus Therapeutics, and LP is a past employee. MJC and OSL hold stock/stock options in the company.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, A.EE., Harmon, B.T., Padegimas, L. et al. Intranasal Delivery of pGDNF DNA Nanoparticles Provides Neuroprotection in the Rat 6-Hydroxydopamine Model of Parkinson’s Disease. Mol Neurobiol 56, 688–701 (2019). https://doi.org/10.1007/s12035-018-1109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1109-6

Keywords

Navigation