Skip to main content

Advertisement

Log in

Glutamate Inhibits the Pro-Survival Effects of Insulin-Like Growth Factor-1 on Retinal Ganglion Cells in Hypoxic Neonatal Rat Retina

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate that accumulates in injured brain tissue has been shown to hinder the neuroprotection rendered by insulin-like growth factor-1 (IGF-1). However, its role in attenuating the neuroprotective effect of IGF-1 in the hypoxic retina is unknown and the current study was aimed at elucidating this. One-day-old Wistar rats were exposed to hypoxia for 2 h and the retinas were studied at 3 h to 14 days after exposure. Following hypoxia, the concentrations of glutamate and IGF-1 were significantly increased over control values in the immature retina and in cultured retinal ganglion cells (RGCs). In addition to IGF-1, the relative expression of insulin receptor substrate-1 (IRS1) phosphorylated at the tyrosine residue (p-IRS1tyr), phosphorylated protein kinase B (p-AKT) and phosphorylated protein kinase A (p-PKA), which are involved in IGF-1 signalling, was also studied in hypoxic retinas and in cultured RGCs. Glutamate-mediated inhibition of the IGF-1 pathway in hypoxic RGCs was evident with a reduced expression of p-IRS1tyr and p-AKT and an increased expression of p-PKA. However, the addition of exogenous IGF-1 reversed this. Glutamate enables the phosphorylation of IRS1 at the serine residue (p-IRS1ser) through a PKA-dependent pathway. The increased expression of p-IRS1ser and its increased association with IGF-1 receptors in hypoxic RGCs suggested a possible interference by glutamate with the IGF-1 pathway. Moreover, there was increased caspase-3/7 activity in hypoxic RGCs. These results suggest that glutamate, by blocking IGF-1-mediated neuroprotection, could cause the apoptosis of RGCs in the hypoxic neonatal retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akkoyun I, Oto S, Yilmaz G, Gurakan B, Tarcan A, Anuk D, Akgun S, Akova YA (2006) Risk factors in the development of mild and severe retinopathy of prematurity. J AAPOS : Off Publ Am Assoc Pediatr Ophthalmol Strabismus / Am Assoc Pediatr Ophthalmol Strabismus 10(5):449–453. doi:10.1016/j.jaapos.2006.05.007

  2. Shah VA, Yeo CL, Ling YL, Ho LY (2005) Incidence, risk factors of retinopathy of prematurity among very low birth weight infants in Singapore. Ann Acad Med Singap 34(2):169–178

    CAS  PubMed  Google Scholar 

  3. Lad EM, Nguyen TC, Morton JM, Moshfeghi DM (2008) Retinopathy of prematurity in the United States. Br J Ophthalmol 92(3):320–325. doi:10.1136/bjo.2007.126201

    Article  CAS  PubMed  Google Scholar 

  4. Kaur C, Sivakumar V, Foulds WS, Luu CD, Ling EA (2009) Cellular and vascular changes in the retina of neonatal rats after an acute exposure to hypoxia. Invest Ophthalmol Vis Sci 50(11):5364–5374. doi:10.1167/iovs.09-3552

    Article  PubMed  Google Scholar 

  5. Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C (2013) Hypoxia-induced retinal ganglion cell damage through activation of AMPA receptors and the neuroprotective effects of DNQX. Exp Eye Res 109:83–97. doi:10.1016/j.exer.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  6. Rathnasamy G, Sivakumar V, Rangarajan P, Foulds WS, Ling EA, Kaur C (2014) NF-kappaB-mediated nitric oxide production and activation of caspase-3 cause retinal ganglion cell death in the hypoxic neonatal retina. Invest Ophthalmol Vis Sci 55(9):5878–5889. doi:10.1167/iovs.13-13718

    Article  CAS  PubMed  Google Scholar 

  7. Kaur C, Sivakumar V, Foulds WS, Luu CD, Ling EA (2012) Hypoxia-induced activation of N-methyl-D-aspartate receptors causes retinal ganglion cell death in the neonatal retina. J Neuropathol Exp Neurol 71(4):330–347. doi:10.1097/NEN.0b013e31824deb21

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Galloway E, Arango C, Pons S, Torres-Aleman I (2003) Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling. Mol Cell Neurosci 24(4):1027–1037

    Article  CAS  PubMed  Google Scholar 

  9. Guan J, Bennet L, Gluckman PD, Gunn AJ (2003) Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 70(6):443–462

    Article  CAS  PubMed  Google Scholar 

  10. Yin QW, Johnson J, Prevette D, Oppenheim RW (1994) Cell death of spinal motoneurons in the chick embryo following deafferentation: rescue effects of tissue extracts, soluble proteins, and neurotrophic agents. J Neurosci 14(12):7629–7640

    CAS  PubMed  Google Scholar 

  11. Delaney CL, Russell JW, Cheng HL, Feldman EL (2001) Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol 60(2):147–160

    Article  CAS  PubMed  Google Scholar 

  12. Yang X, Wei A, Liu Y, He G, Zhou Z, Yu Z (2013) IGF-1 protects retinal ganglion cells from hypoxia-induced apoptosis by activating the Erk-1/2 and Akt pathways. Mol Vis 19:1901–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan J, Williams C, Gunning M, Mallard C, Gluckman P (1993) The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J Cereb Blood Flow Metab 13(4):609–616. doi:10.1038/jcbfm.1993.79

    Article  CAS  PubMed  Google Scholar 

  14. Seigel GM, Lupien SB, Campbell LM, Ishii DN (2006) Systemic IGF-I treatment inhibits cell death in diabetic rat retina. J Diabetes Complicat 20(3):196–204. doi:10.1016/j.jdiacomp.2005.06.007

    Article  PubMed  Google Scholar 

  15. Kermer P, Klocker N, Labes M, Bahr M (2000) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20(2):2–8

    CAS  PubMed  Google Scholar 

  16. Koriyama Y, Homma K, Sugitani K, Higuchi Y, Matsukawa T, Murayama D, Kato S (2007) Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration. Neurochem Int 50(5):749–756. doi:10.1016/j.neuint.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  17. Ma J, Guo C, Guo C, Sun Y, Liao T, Beattie U, Lopez FJ, Chen DF et al (2015) Transplantation of human neural progenitor cells expressing IGF-1 enhances retinal ganglion cell survival. PLoS One 10(4):e0125695. doi:10.1371/journal.pone.0125695

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13(7):663–669

    Article  CAS  PubMed  Google Scholar 

  19. Otori Y, Wei JY, Barnstable CJ (1998) Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest Ophthalmol Vis Sci 39(6):972–981

    CAS  PubMed  Google Scholar 

  20. Otori Y, Kusaka S, Kawasaki A, Morimura H, Miki A, Tano Y (2003) Protective effect of nilvadipine against glutamate neurotoxicity in purified retinal ganglion cells. Brain Res 961(2):213–219

    Article  CAS  PubMed  Google Scholar 

  21. Barnstable CJ, Drager UC (1984) Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11(4):847–855

    Article  CAS  PubMed  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Nivison-Smith L, Chua J, Tan SS, Kalloniatis M (2014) Amino acid signatures in the developing mouse retina. Int J Dev Neurosci 33:62–80. doi:10.1016/j.ijdevneu.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  24. Ehinger B, Ottersen OP, Storm-Mathisen J, Dowling JE (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc Natl Acad Sci U S A 85(21):8321–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Massey SC (1990) Cell types using glutamate as a neurotransmitter in the vertebrate retina. In: Osborne NN, Chander GJ (eds) Progress in retinal research, vol 9. Pergamon Press, Oxford, pp 399–425

    Google Scholar 

  26. Marc RE, Liu WL, Kalloniatis M, Raiguel SF, van Haesendonck E (1990) Patterns of glutamate immunoreactivity in the goldfish retina. J Neurosci 10(12):4006–4034

    CAS  PubMed  Google Scholar 

  27. Marc RE, Murry RF, Basinger SF (1995) Pattern recognition of amino acid signatures in retinal neurons. J Neurosci 15(7 Pt 2):5106–5129

    CAS  PubMed  Google Scholar 

  28. Haberecht MF, Redburn DA (1996) High levels of extracellular glutamate are present in retina during neonatal development. Neurochem Res 21(2):285–291

    Article  CAS  PubMed  Google Scholar 

  29. Dreyer EB (1998) A proposed role for excitotoxicity in glaucoma. J Glaucoma 7(1):62–67

    Article  CAS  PubMed  Google Scholar 

  30. Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23(1):91–147. doi:10.1016/j.preteyeres.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  31. Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. Brain Res 1018(1):66–72. doi:10.1016/j.brainres.2004.05.055

    Article  CAS  PubMed  Google Scholar 

  32. Kaur C, Foulds WS, Ling EA (2008) Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol (Auckland, NZ) 2(4):879–889

    Article  Google Scholar 

  33. Calvaruso G, Vento R, Giuliano M, Lauricella M, Gerbino E, Tesoriere G (1996) Insulin-like growth factors in chick embryo retina during development. Regul Pept 61(1):19–25

    Article  CAS  PubMed  Google Scholar 

  34. Vanhaesebrouck S, Daniels H, Moons L, Vanhole C, Carmeliet P, De Zegher F (2009) Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration. Pediatr Res 65(3):307–310. doi:10.1203/PDR.0b013e3181973dc8

    Article  CAS  PubMed  Google Scholar 

  35. Hernandez-Sanchez C, Lopez-Carranza A, Alarcon C, de La Rosa EJ, de Pablo F (1995) Autocrine/paracrine role of insulin-related growth factors in neurogenesis: local expression and effects on cell proliferation and differentiation in retina. Proc Natl Acad Sci U S A 92(21):9834–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103(34):12769–12774. doi:10.1073/pnas.0601990103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Homma K, Koriyama Y, Mawatari K, Higuchi Y, Kosaka J, Kato S (2007) Early downregulation of IGF-I decides the fate of rat retinal ganglion cells after optic nerve injury. Neurochem Int 50(5):741–748. doi:10.1016/j.neuint.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  38. Aburto MR, Magarinos M, Leon Y, Varela-Nieto I, Sanchez-Calderon H (2012) AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One 7(1):e30790. doi:10.1371/journal.pone.0030790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Liao S, Geng R, Zheng Y, Liao R, Yan F, Thrimawithana T, Little PJ et al (2015) IGF-1 signaling via the PI3K/Akt pathway confers neuroprotection in human retinal pigment epithelial cells exposed to sodium nitroprusside insult. J Mol Neurosci: MN 55(4):931–940. doi:10.1007/s12031-014-0448-7

    Article  CAS  PubMed  Google Scholar 

  40. Zheng WH, Quirion R (2009) Glutamate acting on N-methyl-D-aspartate receptors attenuates insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling properties in rat hippocampal neurons. J Biol Chem 284(2):855–861. doi:10.1074/jbc.M807914200

    Article  CAS  PubMed  Google Scholar 

  41. Sun C, Meng Q, Zhang L, Wang H, Quirion R, Zheng W (2012) Glutamate attenuates IGF-1 receptor tyrosine phosphorylation in mouse brain: possible significance in ischemic brain damage. Neurosci Res 74(3-4):290–297. doi:10.1016/j.neures.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Zheng WH, Kar S, Quirion R (2000) Stimulation of protein kinase C modulates insulin-like growth factor-1-induced akt activation in PC12 cells. J Biol Chem 275(18):13377–13385

    Article  CAS  PubMed  Google Scholar 

  43. Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 272(47):29911–29918

    Article  CAS  PubMed  Google Scholar 

  44. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants R-181-000-148-750 and R-181-000-162-733 from the National University Health System (NUHS), Singapore

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charanjit Kaur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathnasamy, G., Foulds, W.S., Ling, E.A. et al. Glutamate Inhibits the Pro-Survival Effects of Insulin-Like Growth Factor-1 on Retinal Ganglion Cells in Hypoxic Neonatal Rat Retina. Mol Neurobiol 54, 3453–3464 (2017). https://doi.org/10.1007/s12035-016-9905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9905-3

Keywords

Navigation