Skip to main content
Log in

The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1’s role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GlcAT-P:

HNK-1 glucuronyl transferase

HMGB1:

High mobility group box 1

HNK-1:

Human natural killer cell antigen-1

HNK-1ST:

HNK-1 sulfotransferase

IMRF:

Intermediate reticular formation

MAG:

Myelin-associated glycoprotein

MO:

Morpholino

NMLF:

Nucleus of the medial longitudinal fascicle

SCI:

Spinal cord injury

SGGL:

Sulfoglucuronylglycolipids

References

  1. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208. doi:10.1038/nrn1349

    Article  CAS  PubMed  Google Scholar 

  2. Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311(5982):153–155

    Article  CAS  PubMed  Google Scholar 

  3. Jungalwala FB (1994) Expression and biological functions of sulfoglucuronyl glycolipids (SGGLs) in the nervous system--a review. Neurochem Res 19(8):945–957

    Article  CAS  PubMed  Google Scholar 

  4. Seiki T, Oka S, Terayama K, Imiya K, Kawasaki T (1999) Molecular cloning and expression of a second glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. Biochem Biophys Res Commun 255(1):182–187. doi:10.1006/bbrc.1999.0151

    Article  CAS  PubMed  Google Scholar 

  5. Terayama K, Oka S, Seiki T, Miki Y, Nakamura A, Kozutsumi Y, Takio K, Kawasaki T (1997) Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc Natl Acad Sci U S A 94(12):6093–6098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bakker H, Friedmann I, Oka S, Kawasaki T, Nifant’ev N, Schachner M, Mantei N (1997) Expression cloning of a cDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem 272(47):29942–29946

    Article  CAS  PubMed  Google Scholar 

  7. Morita I, Kizuka Y, Kakuda S, Oka S (2008) Expression and function of the HNK-1 carbohydrate. J Biochem 143(6):719–724. doi:10.1093/jb/mvm221

    Article  CAS  PubMed  Google Scholar 

  8. Terayama K, Seiki T, Nakamura A, Matsumori K, Ohta S, Oka S, Sugita M, Kawasaki T (1998) Purification and characterization of a glucuronyltransferase involved in the biosynthesis of the HNK-1 epitope on glycoproteins from rat brain. J Biol Chem 273(46):30295–30300

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T (2002) Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 277(30):27227–27231. doi:10.1074/jbc.C200296200

    Article  CAS  PubMed  Google Scholar 

  10. Oka S, Terayama K, Kawashima C, Kawasaki T (1992) A novel glucuronyltransferase in nervous system presumably associated with the biosynthesis of HNK-1 carbohydrate epitope on glycoproteins. J Biol Chem 267(32):22711–22714

    CAS  PubMed  Google Scholar 

  11. Chou DK, Prasadarao N, Koul O, Jungalwala FB (1991) Developmental expression of HNK-1-reactive antigens in rat cerebral cortex and molecular heterogeneity of sulfoglucuronylneolactotetraosylceramide in CNS versus PNS. J Neurochem 57(3):852–859

    Article  CAS  PubMed  Google Scholar 

  12. Chou DK, Tobet S, Jungalwala FB (2000) Interaction of sulfoglucuronyl (HNK-1) carbohydrate and its binding protein, SBP-1, in microexplant cultures of rat cerebellum. J Neurosci Res 59(2):188–201. doi:10.1002/(SICI)1097-4547(20000115)59:2<188::AID-JNR5>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Nair SM, Chou DK, Tobet SA, Jungalwala FB (2000) Expression and role of sulfoglucuronyl (HNK-1) carbohydrate and its binding protein SBP-1 in developing rat cerebral cortex. J Neurosci Res 62(2):186–205. doi:10.1002/1097-4547(20001015)62:2<186::AID-JNR4>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  14. Chou DK, Schachner M, Jungalwala FB (2002) HNK-1 sulfotransferase null mice express glucuronyl glycoconjugates and show normal cerebellar granule neuron migration in vivo and in vitro. J Neurochem 82(5):1239–1251

    Article  CAS  PubMed  Google Scholar 

  15. Keilhauer G, Faissner A, Schachner M (1985) Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature 316(6030):728–730

    Article  CAS  PubMed  Google Scholar 

  16. Hall H, Liu L, Schachner M, Schmitz B (1993) The L2/HNK-1 carbohydrate mediates adhesion of neural cells to laminin. Eur J Neurosci 5(1):34–42

    Article  CAS  PubMed  Google Scholar 

  17. Cole GJ, Schachner M (1987) Localization of the L2 monoclonal antibody binding site on chicken neural cell adhesion molecule (NCAM) and evidence for its role in NCAM-mediated cell adhesion. Neurosci Lett 78(2):227–232

    Article  CAS  PubMed  Google Scholar 

  18. Griffith LS, Schmitz B, Schachner M (1992) L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion molecule P0. J Neurosci Res 33(4):639–648. doi:10.1002/jnr.490330417

    Article  CAS  PubMed  Google Scholar 

  19. Hall H, Carbonetto S, Schachner M (1997) L1/HNK-1 carbohydrate- and beta 1 integrin-dependent neural cell adhesion to laminin-1. J Neurochem 68(2):544–553

    Article  CAS  PubMed  Google Scholar 

  20. Kizuka Y, Oka S (2012) Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci 69(24):4135–4147. doi:10.1007/s00018-012-1036-z

    Article  CAS  PubMed  Google Scholar 

  21. Saghatelyan AK, Snapyan M, Gorissen S, Meigel I, Mosbacher J, Kaupmann K, Bettler B, Kornilov AV, Nifantiev NE, Sakanyan V, Schachner M, Dityatev A (2003) Recognition molecule associated carbohydrate inhibits postsynaptic GABA(B) receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol Cell Neurosci 24(2):271–282

    Article  CAS  PubMed  Google Scholar 

  22. Burger D, Simon M, Perruisseau G, Steck AJ (1990) The epitope(s) recognized by HNK-1 antibody and IgM paraprotein in neuropathy is present on several N-linked oligosaccharide structures on human P0 and myelin-associated glycoprotein. J Neurochem 54(5):1569–1575

    Article  CAS  PubMed  Google Scholar 

  23. Irintchev A, Wu MM, Lee HJ, Zhu H, Feng YP, Liu YS, Bernreuther C, Loers G, You SW, Schachner M (2011) Glycomimetic improves recovery after femoral injury in a non-human primate. J Neurotrauma 28(7):1295–1306. doi:10.1089/neu.2011.1775

    Article  PubMed  Google Scholar 

  24. Simova O, Irintchev A, Mehanna A, Liu J, Dihne M, Bachle D, Sewald N, Loers G, Schachner M (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60(4):430–437. doi:10.1002/ana.20948

    Article  CAS  PubMed  Google Scholar 

  25. Senn C, Kutsche M, Saghatelyan A, Bosl MR, Lohler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20(4):712–729

    Article  CAS  PubMed  Google Scholar 

  26. Kunemund V, Jungalwala FB, Fischer G, Chou DK, Keilhauer G, Schachner M (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol 106(1):213–223

    Article  CAS  PubMed  Google Scholar 

  27. Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24(36):7837–7842. doi:10.1523/JNEUROSCI.2420-04.2004

    Article  CAS  PubMed  Google Scholar 

  28. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595. doi:10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  29. Guo Y, Ma L, Cristofanilli M, Hart RP, Hao A, Schachner M (2011) Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience 172:329–341. doi:10.1016/j.neuroscience.2010.10.026

    Article  CAS  PubMed  Google Scholar 

  30. Lin JF, Pan HC, Ma LP, Shen YQ, Schachner M (2012) The cell neural adhesion molecule contactin-2 (TAG-1) is beneficial for functional recovery after spinal cord injury in adult zebrafish. PLoS One 7(12):e52376. doi:10.1371/journal.pone.0052376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma L, Yu YM, Guo Y, Hart RP, Schachner M (2012) Cysteine- and glycine-rich protein 1a is involved in spinal cord regeneration in adult zebrafish. Eur J Neurosci 35(3):353–365. doi:10.1111/j.1460-9568.2011.07958.x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pan HC, Lin JF, Ma LP, Shen YQ, Schachner M (2013) Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish. Eur J Neurosci 37(2):203–211. doi:10.1111/ejn.12038

    Article  PubMed  Google Scholar 

  33. Yu Y, Schachner M (2013) Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish. Eur J Neurosci 38(2):2280–2289. doi:10.1111/ejn.12222

    Article  PubMed  Google Scholar 

  34. Yu YM, Cristofanilli M, Valiveti A, Ma L, Yoo M, Morellini F, Schachner M (2011) The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish. Neuroscience 183:238–250. doi:10.1016/j.neuroscience.2011.03.043

    Article  CAS  PubMed  Google Scholar 

  35. Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, Otsuka S, Sabaawy HE, Hart RP, Schachner M (2011) MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci 33(9):1587–1597. doi:10.1111/j.1460-9568.2011.07643.x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma L, Shen YQ, Khatri HP, Schachner M (2014) The asparaginyl endopeptidase legumain is essential for functional recovery after spinal cord injury in adult zebrafish. PLoS One 9(4):e95098. doi:10.1371/journal.pone.0095098

    Article  PubMed  PubMed Central  Google Scholar 

  37. Becker T, Bernhardt RR, Reinhard E, Wullimann MF, Tongiorgi E, Schachner M (1998) Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J Neurosci 18(15):5789–5803

    CAS  PubMed  Google Scholar 

  38. Lieberoth BC, Becker CG, Becker T (2003) Double labeling of neurons by retrograde axonal tracing and non-radioactive in situ hybridization in the CNS of adult zebrafish. Methods Cell Sci 25(1–2):65–70. doi:10.1023/B:MICS.0000006848.57869.4c

    Article  CAS  PubMed  Google Scholar 

  39. Becker CG, Becker T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26(2–3):71–80

    PubMed  Google Scholar 

  40. Bernhardt RR (1999) Cellular and molecular bases of axonal regeneration in the fish central nervous system. Exp Neurol 157(2):223–240

    Article  CAS  PubMed  Google Scholar 

  41. Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zahringer U, Schachner M (2001) Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11(5):373–384

    Article  CAS  PubMed  Google Scholar 

  42. Dias TB, Yang YJ, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245–3252. doi:10.1523/JNEUROSCI.6398-11.2012

    Article  CAS  PubMed  Google Scholar 

  43. Reimer MM, Kuscha V, Wyatt C, Sorensen I, Frank RE, Knuwer M, Becker T, Becker CG (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 29(48):15073–15082. doi:10.1523/JNEUROSCI.4748-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chou DK, Tobet SA, Jungalwala FB (1998) Restoration of synthesis of sulfoglucuronylglycolipids in cerebellar granule neurons promotes dedifferentiation and neurite outgrowth. J Biol Chem 273(14):8508–8515

    Article  CAS  PubMed  Google Scholar 

  45. Fang P, Pan HC, Lin SL, Zhang WQ, Rauvala H, Schachner M, Shen YQ (2014) HMGB1 contributes to regeneration after spinal cord injury in adult zebrafish. Mol Neurobiol 49(1):472–483. doi:10.1007/s12035-013-8533-4

    Article  CAS  PubMed  Google Scholar 

  46. Miura R, Aspberg A, Ethell IM, Hagihara K, Schnaar RL, Ruoslahti E, Yamaguchi Y (1999) The proteoglycan lectin domain binds sulfated cell surface glycolipids and promotes cell adhesion. J Biol Chem 274(16):11431–11438

    Article  CAS  PubMed  Google Scholar 

  47. Miura R, Ethell IM, Yamaguchi Y (2001) Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. J Neurochem 76(2):413–424

    Article  CAS  PubMed  Google Scholar 

  48. Tagawa H, Kizuka Y, Ikeda T, Itoh S, Kawasaki N, Kurihara H, Onozato ML, Tojo A, Sakai T, Kawasaki T, Oka S (2005) A non-sulfated form of the HNK-1 carbohydrate is expressed in mouse kidney. J Biol Chem 280(25):23876–23883. doi:10.1074/jbc.M501728200

    Article  CAS  PubMed  Google Scholar 

  49. Mehanna A, Jakovcevski I, Acar A, Xiao M, Loers G, Rougon G, Irintchev A, Schachner M (2010) Polysialic acid glycomimetic promotes functional recovery and plasticity after spinal cord injury in mice. Mol Ther 18(1):34–43. doi:10.1038/mt.2009.235

    Article  CAS  PubMed  Google Scholar 

  50. Hiraoka N, Nakagawa H, Ong E, Akama TO, Fukuda MN, Fukuda M (2000) Molecular cloning and expression of two distinct human chondroitin 4-O-sulfotransferases that belong to the HNK-1 sulfotransferase gene family. J Biol Chem 275(26):20188–20196. doi:10.1074/jbc.M002443200

    Article  CAS  PubMed  Google Scholar 

  51. Kang HG, Evers MR, Xia G, Baenziger JU, Schachner M (2001) Molecular cloning and expression of an N-acetylgalactosamine-4-O-sulfotransferase that transfers sulfate to terminal and non-terminal beta 1,4-linked N-acetylgalactosamine. J Biol Chem 276(14):10861–10869. doi:10.1074/jbc.M011560200

    Article  CAS  PubMed  Google Scholar 

  52. Evers MR, Xia G, Kang HG, Schachner M, Baenziger JU (2001) Molecular cloning and characterization of a dermatan-specific N-acetylgalactosamine 4-O-sulfotransferase. J Biol Chem 276(39):36344–36353. doi:10.1074/jbc.M105848200

    Article  CAS  PubMed  Google Scholar 

  53. Xia G, Evers MR, Kang HG, Schachner M, Baenziger JU (2000) Molecular cloning and expression of the pituitary glycoprotein hormone N-acetylgalactosamine-4-O-sulfotransferase. J Biol Chem 275(49):38402–38409. doi:10.1074/jbc.M007821200

    Article  CAS  PubMed  Google Scholar 

  54. Rost S, Akyuz N, Martinovic T, Huckhagel T, Jakovcevski I, Schachner M (2015) Germline ablation of dermatan-4O-sulfotransferase1 reduces regeneration after mouse spinal cord injury. Neuroscience 312:74–85. doi:10.1016/j.neuroscience.2015.11.013

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melitta Schachner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Shen, HF., Shen, YQ. et al. The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish. Mol Neurobiol 54, 3253–3263 (2017). https://doi.org/10.1007/s12035-016-9876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9876-4

Keywords

Navigation