Skip to main content

Advertisement

Log in

Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammation is the driving force for brain injury in patients with multiple sclerosis (MS). The objective of the present study is to delineate the serum cytokine profile in patients with progressive MS in a Southern Brazilian population compared with healthy controls and patients with relapsing-remitting MS (RRMS) and its associations with disease progression and disability. We included 32 patients with progressive MS, 126 with RRMS, and 40 healthy controls. The patients were evaluated using the Expanded Disability Status Scale (EDSS) and magnetic resonance imaging (MRI) with gadolinium. Serum interleukin (IL)-1β, IL-6, IL-12, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-10, IL-4, and IL-17 levels were assessed using an enzyme-linked immunosorbent assay. IL-1β, IL-6, TNF-α, IFN-γ, IL-17, IL-4, and IL-10 levels were higher in progressive MS than in controls. Increased IL-1β and IFN-γ and decreased IL-12 and IL-4 levels were found in progressive MS compared with RRMS. Patients with progressive MS with disease progression presented higher TNF-α, IFN-γ, and IL-10 levels than those without disease progression. Patients with progressive MS with disease progression showed a higher frequency of positive gadolinium-enhanced lesions in MRI; higher TNF-α, IFN-γ, and IL-17 levels; and decreased IL-12 levels compared with RRMS patients with progression. There was a significant inverse correlation between IL-10 levels and EDSS score in patients with progressive MS. The results underscore the complex cytokine network imbalance exhibited by progressive MS patients and show the important involvement of TNF-α, IFN-γ, and IL-17 in the pathophysiology and progression of the disease. Moreover, serum IL-10 levels were inversely associated with disability in patients with progressive MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sospedra M, Martin M (2005) Immunology of multiple sclerosis. Ann Rev Immunol 23:683–747

    Article  CAS  Google Scholar 

  2. Cucci A, Barbero P, Clerico M et al (2010) Pro-inflammatory cytokine and chemokine mRNA blood level in multiple sclerosis is related to treatment response and interferon-beta dose. J Neuroimmunol 226:150–157

    Article  CAS  PubMed  Google Scholar 

  3. Bradl M, Lassmann H (2009) Progressive multiple sclerosis. Semin Immunopathol 31:455–465

    Article  CAS  PubMed  Google Scholar 

  4. Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8:647–656

    Article  CAS  PubMed  Google Scholar 

  5. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassman H (2000) Heterogeneity of multiple sclerosis lesions: implication for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  6. Bjatmar C, Wijek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequence for understanding the progressive phase of disease. J Neurol Sci 206:165–171

    Article  Google Scholar 

  7. Graber JJ, Ford D, Zhan M, Francis G, Panitch H, Dhib-Jalbut S (2007) Cytokine changes during interferon-beta therapy in multiple sclerosis: correlation with interferon dose and MRI response. J Neuroimmunol 185:168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dihb-Jalbut S, Arnold DL, Cleveland DW et al (2006) Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 176:198–215

    Article  Google Scholar 

  9. Huang P, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10:482–487

    Article  CAS  PubMed  Google Scholar 

  10. Imitola J, Chitnis T, Khoury SJ (2005) Cytokines in multiple sclerosis: from bench to bedside. Pharmacol Ther 106:163–177

    Article  CAS  PubMed  Google Scholar 

  11. Vojdani A, Lambert J (2011) The role of Th17 in neuroimmune disorders: target for CAM therapy. Part I. Evid Based Complement Alternat Med 2011:927294. doi:10.1093/ecam/nep062

    PubMed  PubMed Central  Google Scholar 

  12. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG (2009) Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31:331–341

    Article  CAS  PubMed  Google Scholar 

  13. Sweeney CM, Lonergan R, Basdeo SA et al (2011) IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25:1170–1181

    Article  CAS  PubMed  Google Scholar 

  14. Lovett’Racke AE, Yang Y, Racke MK (2011) Th1 and Th17: are T cell cytokines relevant in multiple sclerosis? Bioch Bioph Acta 1812:246–251

    Google Scholar 

  15. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 4evision to the McDonald criteria. Ann Neurol 69:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  16. Polman CH, Reingold SC, Edan G et al (2005) Immunology of multiple sclerosis. Ann Rev Immunol 23:683–747

    Article  Google Scholar 

  17. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of few Agents in Multiple Sclerosis. Neurol 46:907–911

    Article  CAS  Google Scholar 

  18. Brazil. Ministry of Health National Health Surveillance Agency Board (ANVISA): Resolution RDC no. 153, June 14, 2004. Official Gazette: 24 Jun, 2004, Brazil. http://portal.anvisa.gov.br/wps/wcm/connect/4bc8428047457945865fd63fbc4c6735/rdc_153.pdf?MOD=AJPERES. Acessed 24 Mar 2016

  19. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol 33:1444–1452

    Article  CAS  Google Scholar 

  20. Koch M, Mostert J, Arutjunyan AV et al (2007) Plasma lipid peroxidation and progression of disability in multiple sclerosis. Eur J Neurol 14:529–533

    Article  CAS  PubMed  Google Scholar 

  21. Teunissem CE, Petzold A, Bennetm JL et al (2009) A consensus of the standardization of cerebral fluid collection and biobanking. Neurol 73:1914–1922

    Article  Google Scholar 

  22. Nguyen LT, Ramanathan M, Weinstock-Guttman B, Baier M, Brownscheidle C, Jacobs LD (2003) Sex differences in in vitro pro-inflammatory cytokine production from peripheral blood of multiple sclerosis patients. J Neurol Sci 209:93–99

    Article  CAS  PubMed  Google Scholar 

  23. Ramgolam VS, Sha Y, Jin J, Zhang X, Markovic-Plese S (2009) IFN-beta inhibits human Th17 cell differentiation. J Immunol 183:5418–5427

    Article  CAS  PubMed  Google Scholar 

  24. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  25. Frischer JM, Bramow S, Dal-Bianco A et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  26. Franklin RJ, Efrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855

    Article  CAS  PubMed  Google Scholar 

  27. Rist JM, Franklin RJ (2008) Taking ageing into account in remyelination-based therapies for multiple sclerosis. J Neurol Sci 274:64–67

    Article  CAS  PubMed  Google Scholar 

  28. Confavreux C, Vukusic S (2006) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616

    Article  PubMed  Google Scholar 

  29. Vukusic S, Confavreux C (2003) Prognostic factors for progression of disability in the secondary progressive phase of multiple sclerosis. J Neurol Sci 206:135–137

    Article  PubMed  Google Scholar 

  30. Vukusic S, Confavreux C (2007) Natural history of multiple sclerosis: risk factors and prognostic indicators. Curr Opinion Neurol 20:269–274

    Article  Google Scholar 

  31. Broman T, Anderson O, Bergmann L (1981) Clinical studies on multiple sclerosis. I Presentation of an incidence material from Gothenburg. Acta Neurol Scand 63:6–33

    Article  CAS  PubMed  Google Scholar 

  32. Minderhoud C, Van Der Hoeven JH, Prange AJ (1988) Course and prognosis of chronic progressive multiple sclerosis. Results of an epidemiological study. Acta Neurol Scand 78:10–15

    Article  CAS  PubMed  Google Scholar 

  33. Confavreux C, Vukusic S, Moreau T, Adeleine P (2000) Relapses progression of disability in multiple sclerosis. N Engl J Med 343:1430–1438

    Article  CAS  PubMed  Google Scholar 

  34. Katz D, Taubenberger JK, Canella B, Mcfarlin DE, Raine CS, Mcfarland HF (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34:661–669

    Article  CAS  PubMed  Google Scholar 

  35. Cotton F, Weiner HL, Jolesz FA, Guttmann CR (2003) MRI contrast uptake in new lesions in relapsing/remitting MS followed at weekly intervals. Neurol 60:640–646

    Article  Google Scholar 

  36. Anderson VM, Fox NC, Miller DH (2006) Magnetic Resonance imaging measures of brain atrophy in multiple sclerosis. J Magn Reson Imaging 23:605–618

    Article  PubMed  Google Scholar 

  37. Zivadinov R, Cox JL (2007) Neuroimaging in multiple sclerosis. Int Rev Neurobiol 79:449–474

    Article  PubMed  Google Scholar 

  38. Thompson AJ, Kermode AG, Wicks D et al (1991) Major differences in the dynamics of primary and secondary progressive multiple sclerosis. Ann Neurol 29:53–62

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi JL, Giuliani F, Power C, Imani Y, Young VW (2003) Interleukin 1 beta promotes oligodendrocytes death through glutamate excitotoxicity. Ann Neurol 53:588–595

    Article  CAS  PubMed  Google Scholar 

  40. John GR, Lee SC, Song X, Rivieccio M, Brosnan CF (2005) IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia 49:161–176

    Article  PubMed  Google Scholar 

  41. Van Wagoner NJ, Benveniste EN (1999) Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol 100:124–139

    Article  PubMed  Google Scholar 

  42. Kapplin AI, Deshpande DM, Scott E et al (2005) Interleukin 6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis. J Clin Invest 10:2731–2741

    Article  Google Scholar 

  43. Vartanian T, Li Y, Zhao M, Stefansson K (1995) Interferon-gamma-induced oligodendrocytes cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1:732–743

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Renno T, Taupin V, Bourbonniere L et al (1998) Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci 12:376–389

    Article  CAS  PubMed  Google Scholar 

  45. Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286

    Article  CAS  PubMed  Google Scholar 

  46. Alatab S, Maghbooli Z, Hossein-Nezhad A, Khosrofar M, Mokhtari A (2011) Cytokine profile, Foxp3 and nuclear factor-kB ligand levels in multiple sclerosis subtypes. Minerva Med 6:461–468

    Google Scholar 

  47. Sharief MK, Phil A, Hentges R (1991) Association between tumor necrosis factor-alpha and disease progression in multiple sclerosis patients. N Engl J Med 325:467–472

    Article  CAS  PubMed  Google Scholar 

  48. Eikelenboom MJ, Killestein J UBM, Polman CH (2005) Sex differences in pro- and anti-inflammatory cytokine profiles of progressive patients in multiple sclerosis. Mult Scler 11:520–523

    Article  CAS  PubMed  Google Scholar 

  49. Obradovic D, Kataranovski M, Dincic E, Obradovic S, Colic M (2012) Tumor necrosis factor-alpha and interleukin-4 in cerebrospinal fluid and plasma in different clinical forms of multiple sclerosis. Vojnosanit Plegl 69:151–156

    Article  Google Scholar 

  50. Eugster HP, Frei K, Kopf M, Lassmann H, Fontana A (1998) IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur J Immunol 28:2178–2187

    Article  CAS  PubMed  Google Scholar 

  51. Okuda Y, Sakoda S, Bernard CC et al (1998) IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int Immunol 10:703–708

    Article  CAS  PubMed  Google Scholar 

  52. Jadidi-Niaragh F, Mirshafiey A (2011) Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 74:1–13

    Article  CAS  PubMed  Google Scholar 

  53. Brucklacher-Waldert V, Sturner K, Kolster M, Wolthausen E, Tolosa E (2009) Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132:3329–3341

    Article  PubMed  Google Scholar 

  54. Kebir H, Ifergan I, Alvarez IJ, Bernard M, Poirier J, Arbour N, Duquette P, Prat A (2009) Preferential recruitment of interferon-gamma-expressing Th17 cells in multiple sclerosis. Ann Neurol 66:390–402

    Article  CAS  PubMed  Google Scholar 

  55. Betteli E, Das MP, Howard ED, Weiner HL, Ra S, Kuchroo VK (1998) IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient and transgenic mice. J Immunol 161:3299–3306

    Google Scholar 

  56. Chung Y, Chang S, Martinez GJ et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’shea JJ (2010) Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev 21:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflam 2012:819467. doi:10.1155/2012/819467

    Article  PubMed  Google Scholar 

  59. Kallaur AP, Oliveira SR, Colado Simão AN et al (2013) Cytokine profile in relapsing-remitting multiple sclerosis patients and the association with the progression and the activity of the disease. Mol Med Reports 7:1010–1020

    CAS  Google Scholar 

  60. Matusevicius D, Kivisakk P, He B et al (1999) Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 5:101–104

    Article  CAS  PubMed  Google Scholar 

  61. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than IL-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  62. Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature 448:484–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483

    Article  CAS  PubMed  Google Scholar 

  64. Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs Th17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  CAS  PubMed  Google Scholar 

  65. Killestein J, Den Drijver BF, Van Der Graaff WL, Uitdehaag BM, Polman CH, Van Lier RA (2001) Intracellular cytokine profile in T-cell subsets of multiple sclerosis patients: different features in primary progressive disease. Mult Scler 7:145–150

    Article  CAS  PubMed  Google Scholar 

  66. Tzartos JS, Friese MA, Craner MJ et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ossege LM, Sindern E, Patzold T, Malin JP (2001) Immunomodulatory effects of interferon-beta 1b in patients with multiple sclerosis. Int J Immunopharmacol 45:1085–1100

    Article  Google Scholar 

  68. Van Boxel-Dezaire AH, Hoff SC, Van Oosten BW et al (1999) Decreased interleukin-10 and increased interleukin-12p40 mRNA are associated with disease activity and characterize different disease stages in multiple sclerosis. Ann Neurol 45:695–703

    Article  PubMed  Google Scholar 

  69. Goodin DS, Frohman EM, Guarmany GP et al (2002) Disease modifying therapies in multiple sclerosis: reports of the therapeutics and technology assessment subcommittee of American Academy of Neurology and the MS Council for Clinical Practice Guide. Neurol 22:169–178

    Article  Google Scholar 

  70. PRISMS (1998) Randomized double-blind placebo-controlled study interferon-beta 1a in relapsing/remitting multiples sclerosis. Lancet 352:1498–1504

    Article  Google Scholar 

  71. Kraus J, Kuehne BS, Tofighi J et al (2002) Serum cytokine levels do not correlate with disease activity and severity assessed by brain MRI in multiple sclerosis. Acta Neurol Scand 105:300–308

    Article  CAS  PubMed  Google Scholar 

  72. Raivich G, Banati R (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Rev 46:161–181

    Article  Google Scholar 

  73. Revel M, Chebath J, Mangelus M, Harroch S, Moviglia GA (1995) Antagonism of interferon beta on interferon gamma: inhibition of signal transduction in vitro and reduction of serum levels in multiple sclerosis patients. Mult Scler 1:S5–S11

    CAS  PubMed  Google Scholar 

  74. Clerici M, Saresella M, Trabattoni D et al (2001) Single-cell analysis of cytokine production shows different immune profiles in multiple sclerosis patients with active or quiescent disease. J Neuroimmunol 121:88–101

    Article  CAS  PubMed  Google Scholar 

  75. Gilmore W, Weiner L, Correale J (1997) Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol 158:446–451

    CAS  PubMed  Google Scholar 

  76. Brandao CO, Ruocco HH, Farias ADOSS et al (2005) Cytokine and intrathecal IgG synthesis in multiple sclerosis patients during clinical remission. Arq Neuropsiquiatr 63:914–919

    Article  PubMed  Google Scholar 

  77. Cook A (2006) Th17 cells in inflammatory conditions. Rev Diab Stud 3:72–75

    Article  Google Scholar 

  78. Samoilova EB, Horton JL, Chen Y (1998) Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell Immunol 188:118–124

    Article  CAS  PubMed  Google Scholar 

  79. Luomala M, Lehtimäki T, Huhtala H, Ukkonen M, Koivula T, Hurme H, Elovaara I (2003) Promoter polymorphism of IL-10 and severity of multiple sclerosis. Acta Neurol Scand 108:396–400

    Article  CAS  PubMed  Google Scholar 

  80. Pelfrey CM, Rudick RA, Cotleur AC, Lee JC, Tary-Lehmann M, Lehmann PV (2000) Quantification of self-recognition in multiple sclerosis by single cell analysis of cytokine production. J Immunol 165:1641–1651

    Article  CAS  PubMed  Google Scholar 

  81. Rieckmann P, Albrecht M, Kitze B et al (1994) Cytokine mRNA levels in mononuclear blood cells from patients with multiple sclerosis. Neurol 44:1523–1526

    Article  CAS  Google Scholar 

  82. Codarri L, Fontana A, Becher B (2010) Cytokines network in multiple sclerosis: lost in translation. Curr Opin Neurol 23:205–211

    Article  CAS  PubMed  Google Scholar 

  83. Buttmann M (2010) Treating multiple sclerosis with monoclonal antibodies: a 2010 update. Expert Rev Neurother 10:791–809

    Article  CAS  PubMed  Google Scholar 

  84. Mellergard J, Edtröm M, Vrethem M, Ernerudh J, Dable C (2010) Natalizumab treatment in multiple sclerosis: marked decline oh chemokine and cytokine in cerebrospinal fluid. Mult Scler 16:208–217

    Article  CAS  PubMed  Google Scholar 

  85. Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127:1463–1478

    Article  PubMed  Google Scholar 

  86. Giovannoni G, Green AJ, Thompson EJ (1998) Are there any body fluid markers of brain atrophy in multiple sclerosis? Mult Scler 4:138–142

    Article  CAS  PubMed  Google Scholar 

  87. Bielekova B, Becker BL (2010) Monoclonal antibodies in MS: mechanism of action. Neurol 74:S312–S340

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from Coordination for the Improvement of Higher Level of Education Personnel (CAPES) of Brazilian Ministry of Education, Institutional Program for Scientific Initiation Scholarship (PIBIC) of the National Council for Scientific and Technological Development (CNPq), and State University of Londrina (PROPPG). We thank the University Hospital of State University of Londrina and HUTec Foundation for technical and administrative supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Maria Vissoci Reiche.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallaur, A.P., Oliveira, S.R., Simão, A.N.C. et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol Neurobiol 54, 2950–2960 (2017). https://doi.org/10.1007/s12035-016-9846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9846-x

Keywords

Navigation