Skip to main content
Log in

DJ-1/PARK7, But Not Its L166P Mutant Linked to Autosomal Recessive Parkinsonism, Modulates the Transcriptional Activity of the Orphan Nuclear Receptor Nurr1 In Vitro and In Vivo

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although mutations of DJ-1 have been linked to autosomal recessive Parkinsonism for years, its physiological function and the pathological mechanism of its mutants are not well understood. We report for the first time that exogenous application of DJ-1, but not its L166P mutant, enhances the nuclear translocation and the transcriptional activity of Nurr1, a transcription factor essential for dopaminergic neuron development and maturation, both in vitro and in vivo. Knockdown of DJ-1 attenuates Nurr1 activity. Further investigation showed that signaling of Raf/MEK/ERK MAPKs is involved in this regulatory process and that activation induced by exogenous DJ-1 is antagonized by U0126, an ERK pathway inhibitor, indicating that DJ-1 modulates Nurr1 activity via the Raf/MEK/ERK pathway. Our findings shed light on the novel function of DJ-1 to enhance Nurr1 activity and provide the first insight into the molecular mechanism by which DJ-1 enhances Nurr1 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM et al (2003) DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24:159–160

    Article  CAS  PubMed  Google Scholar 

  2. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  3. Devic I, Hwang H, Edgar JS, Izutsu K, Presland R, Pan C, Goodlett DR, Wang Y et al (2011) Salivary alpha-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 134, e178

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ho DH, Yi S, Seo H, Son I, Seol W (2014) Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed Res Int 2014:704678

    PubMed  PubMed Central  Google Scholar 

  5. Waragai M, Nakai M, Wei J, Fujita M, Mizuno H, Ho G, Masliah E, Akatsu H et al (2007) Plasma levels of DJ-1 as a possible marker for progression of sporadic Parkinson’s disease. Neurosci Lett 425:18–22

    Article  CAS  PubMed  Google Scholar 

  6. Waragai M, Wei J, Fujita M, Nakai M, Ho GJ, Masliah E, Akatsu H, Yamada T et al (2006) Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem Biophys Res Commun 345:967–972

    Article  CAS  PubMed  Google Scholar 

  7. Bandopadhyay R et al (2004) The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127:420–430

    Article  PubMed  Google Scholar 

  8. Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K, Iguchi-Ariga SM, Ariga H (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 231:509–513

    Article  CAS  PubMed  Google Scholar 

  9. Bjorkblom B, Adilbayeva A, Maple-Grodem J, Piston D, Okvist M, Xu XM, Brede C, Larsen JP et al (2013) Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem 288:22809–22820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi MS, Nakamura T, Cho SJ, Han X, Holland EA, Qu J, Petsko GA, Yates JR III et al (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in Parkinson’s disease models. J Neurosci 34:15123–15131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mullett SJ, Di MR, Greenamyre JT, Hinkle DA (2013) DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci 49:507–511

    Article  CAS  PubMed  Google Scholar 

  12. Tanti GK, Goswami SK (2014) SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med 75:1–13

    Article  CAS  PubMed  Google Scholar 

  13. Wilson MA, St Amour CV, Collins JL, Ringe D, Petsko GA (2004) The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proc Natl Acad Sci U S A 101:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM (2009) Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res 87:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li HM, Niki T, Taira T, Iguchi-Ariga SM, Ariga H (2005) Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radic Res 39:1091–1099

    Article  CAS  PubMed  Google Scholar 

  16. Maita C, Maita H, Iguchi-Ariga SM, Ariga H (2013) Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants. PLoS One 8, e54087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW, Marupudi NI, Torp R, Torgner IA et al (2005) Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 14:2063–2073

    Article  CAS  PubMed  Google Scholar 

  18. Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 103:15091–15096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foti R, Zucchelli S, Biagioli M, Roncaglia P, Vilotti S, Calligaris R, Krmac H, Girardini JE et al (2010) Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells. J Biol Chem 285:18565–18574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi K, Taira T, Niki T, Seino C, Iguchi-Ariga SM, Ariga H (2001) DJ-1 positively regulates the androgen receptor by impairing the binding of PIASx alpha to the receptor. J Biol Chem 276:37556–37563

    Article  CAS  PubMed  Google Scholar 

  21. Zhong N, Kim CY, Rizzu P, Geula C, Porter DR, Pothos EN, Squitieri F, Heutink P et al (2006) DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor. J Biol Chem 281:20940–20948

    Article  CAS  PubMed  Google Scholar 

  22. Bitar MS, Liu C, Ziaei A, Chen Y, Schmedt T, Jurkunas UV (2012) Decline in DJ-1 and decreased nuclear translocation of Nrf2 in Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci 53:5806–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan J, Ren H, Jia N, Fei E, Zhou T, Jiang P, Wu M, Wang G (2008) DJ-1 decreases Bax expression through repressing p53 transcriptional activity. J Biol Chem 283:4022–4030

    Article  CAS  PubMed  Google Scholar 

  24. Shinbo Y, Taira T, Niki T, Iguchi-Ariga SM, Ariga H (2005) DJ-1 restores p53 transcription activity inhibited by Topors/p53BP3. Int J Oncol 26:641–648

    CAS  PubMed  Google Scholar 

  25. Hermanson E, Joseph B, Castro D, Lindqvist E, Aarnisalo P, Wallen A, Benoit G, Hengerer B et al (2003) Nurr1 regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 288:324–334

    Article  CAS  PubMed  Google Scholar 

  26. Jankovic J, Chen S, Le WD (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77:128–138

    Article  CAS  PubMed  Google Scholar 

  27. Nordzell M, Aarnisalo P, Benoit G, Castro DS, Perlmann T (2004) Defining an N-terminal activation domain of the orphan nuclear receptor Nurr1. Biochem Biophys Res Commun 313:205–211

    Article  CAS  PubMed  Google Scholar 

  28. Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942

    Article  CAS  PubMed  Google Scholar 

  29. Aleyasin H, Rousseaux MW, Marcogliese PC, Hewitt SJ, Irrcher I, Joselin AP, Parsanejad M, Kim RH et al (2010) DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc Natl Acad Sci U S A 107:3186–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haque ME, Mount MP, Safarpour F, Abdel-Messih E, Callaghan S, Mazerolle C, Kitada T, Slack RS et al (2012) Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J Biol Chem 287:23162–23170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ et al (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102:5215–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muthukumaran K, Smith J, Jasra H, Sikorska M, Sandhu JK, Cohen J, Lopatin D, Pandey S (2014) Genetic susceptibility model of Parkinson’s disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10. J Parkinsons Dis 4:523–530

    CAS  PubMed  Google Scholar 

  33. Paterna JC, Leng A, Weber E, Feldon J, Bueler H (2007) DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 15:698–704

    Article  CAS  PubMed  Google Scholar 

  34. Batelli S, Invernizzi RW, Negro A, Calcagno E, Rodilossi S, Forloni G, Albani D (2015) The Parkinson’s disease-related protein DJ-1 protects dopaminergic neurons in vivo and cultured cells from alpha-synuclein and 6-hydroxydopamine toxicity. Neurodegener Dis 15:13–23

    Article  CAS  PubMed  Google Scholar 

  35. Kim SJ, Park YJ, Oh YJ (2012) Proteomic analysis reveals a protective role for DJ-1 during 6-hydroxydopamine-induced cell death. Biochem Biophys Res Commun 422:8–14

    Article  CAS  PubMed  Google Scholar 

  36. Lev N, Barhum Y, Ben-Zur T, Melamed E, Steiner I, Offen D (2013) Knocking out DJ-1 attenuates astrocytes neuroprotection against 6-hydroxydopamine toxicity. J Mol Neurosci 50:542–550

    Article  CAS  PubMed  Google Scholar 

  37. Sun SY, An CN, Pu XP (2012) DJ-1 protein protects dopaminergic neurons against 6-OHDA/MG-132-induced neurotoxicity in rats. Brain Res Bull 88:609–616

    Article  CAS  PubMed  Google Scholar 

  38. Tsushima J, Nishimura K, Tashiro N, Takata K, Ashihara E, Yoshimoto K, Ariga H, Agata K et al (2012) Protective effect of planarian DJ-1 against 6-hydroxydopamine-induced neurotoxicity. Neurosci Res 74:277–283

    Article  CAS  PubMed  Google Scholar 

  39. Wang YH, Yu HT, Pu XP, Du GH (2013) Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 18:14726–14738

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Polo R, Niso-Santano M, Moran JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G, Fuentes JM (2009) Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem 109:889–898

    Article  CAS  PubMed  Google Scholar 

  41. Kwon HJ, Heo JY, Shim JH, Park JH, Seo KS, Ryu MJ, Han JS, Shong M et al (2011) DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol Lett 202:85–92

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Chen L, Ding Y, Zhuang X, Kang UJ (2007) Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Hum Mol Genet 16:2900–2910

    Article  CAS  PubMed  Google Scholar 

  43. Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H (2012) DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy. J Mol Biol 423:232–248

    Article  CAS  PubMed  Google Scholar 

  44. Mullett SJ, Hinkle DA (2009) DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33:28–36

    Article  PubMed  Google Scholar 

  45. Giaime E, Yamaguchi H, Gautier CA, Kitada T, Shen J (2012) Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening. PLoS One 7, e40501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeong HJ, Kim DW, Woo SJ, Kim HR, Kim SM, Jo HS, Park M, Kim DS et al (2012) Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model. Mol Cells 33:471–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma J, Wu R, Zhang Q, Wu JB, Lou J, Zheng Z, Ding JQ, Yuan Z (2014) DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J 462:489–497

    Article  CAS  PubMed  Google Scholar 

  48. Miyazaki S, Yanagida T, Nunome K, Ishikawa S, Inden M, Kitamura Y, Nakagawa S, Taira T et al (2008) DJ-1-binding compounds prevent oxidative stress-induced cell death and movement defect in Parkinson’s disease model rats. J Neurochem 105:2418–2434

    Article  CAS  PubMed  Google Scholar 

  49. Xu XM, Moller SG (2010) ROS removal by DJ-1: arabidopsis as a new model to understand Parkinson’s disease. Plant Signal Behav 5:1034–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yanagida T, Kitamura Y, Yamane K, Takahashi K, Takata K, Yanagisawa D, Yasui H, Taniguchi T et al (2009) Protection against oxidative stress-induced neurodegeneration by a modulator for DJ-1, the wild-type of familial Parkinson’s disease-linked PARK7. J Pharmacol Sci 109:463–468

    Article  CAS  PubMed  Google Scholar 

  51. Gu L, Cui T, Fan C, Zhao H, Zhao C, Lu L, Yang H (2009) Involvement of ERK1/2 signaling pathway in DJ-1-induced neuroprotection against oxidative stress. Biochem Biophys Res Commun 383:469–474

    Article  CAS  PubMed  Google Scholar 

  52. Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C (2013) SOD1 and DJ-1 converge at Nrf2 pathway: a clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev 2013:836760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Z, Liu J, Chen S, Wang Y, Cao L, Zhang Y, Kang W, Li H et al (2011) DJ-1 modulates the expression of Cu/Zn-superoxide dismutase-1 through the Erk1/2-Elk1 pathway in neuroprotection. Ann Neurol 70:591–599

    Article  CAS  PubMed  Google Scholar 

  54. Cao J, Ying M, Xie N, Lin G, Dong R, Zhang J, Yan H, Yang X et al (2014) The oxidation states of DJ-1 dictate the cell fate in response to oxidative stress triggered by 4-hpr: autophagy or apoptosis? Antioxid Redox Signal 21:1443–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kinumi T, Kimata J, Taira T, Ariga H, Niki E (2004) Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun 317:722–728

    Article  CAS  PubMed  Google Scholar 

  56. Miyama A, Saito Y, Yamanaka K, Hayashi K, Hamakubo T, Noguchi N (2011) Oxidation of DJ-1 induced by 6-hydroxydopamine decreasing intracellular glutathione. PLoS One 6, e27883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nunome K, Miyazaki S, Nakano M, Iguchi-Ariga S, Ariga H (2008) Pyrroloquinoline quinone prevents oxidative stress-induced neuronal death probably through changes in oxidative status of DJ-1. Biol Pharm Bull 31:1321–1326

    Article  CAS  PubMed  Google Scholar 

  58. Zhou W, Zhu M, Wilson MA, Petsko GA, Fink AL (2006) The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 356:1036–1048

    Article  CAS  PubMed  Google Scholar 

  59. McCoy MK, Cookson MR (2011) DJ-1 regulation of mitochondrial function and autophagy through oxidative stress. Autophagy 7:531–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M, Sandebring A, Miller D, Maric D et al (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20:40–50

    Article  CAS  PubMed  Google Scholar 

  61. Waak J, Weber SS, Waldenmaier A, Gorner K, Alunni-Fabbroni M, Schell H, Vogt-Weisenhorn D, Pham TT et al (2009) Regulation of astrocyte inflammatory responses by the Parkinson’s disease-associated gene DJ-1. FASEB J 23:2478–2489

    Article  CAS  PubMed  Google Scholar 

  62. Ishikawa S, Taira T, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SM (2010) Human DJ-1-specific transcriptional activation of tyrosine hydroxylase gene. J Biol Chem 285:39718–39731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Backman C, Perlmann T, Wallen A, Hoffer BJ, Morales M (1999) A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain. Brain Res 851:125–132

    Article  CAS  PubMed  Google Scholar 

  64. Zetterstrom RH, Solomin L, Mitsiadis T, Olson L, Perlmann T (1996) Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol Endocrinol 10:1656–1666

    CAS  PubMed  Google Scholar 

  65. Luo Y (2012) The function and mechanisms of Nurr1 action in midbrain dopaminergic neurons, from development and maintenance to survival. Int Rev Neurobiol 102:1–22

    Article  CAS  PubMed  Google Scholar 

  66. Iwawaki T, Kohno K, Kobayashi K (2000) Identification of a potential Nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun 274:590–595

    Article  CAS  PubMed  Google Scholar 

  67. Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ, Lim JK, Anderson T et al (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634

    Article  CAS  PubMed  Google Scholar 

  68. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026

    CAS  PubMed  Google Scholar 

  69. Ishikawa S, Tanaka Y, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SM (2012) Stimulation of vesicular monoamine transporter 2 activity by DJ-1 in SH-SY5Y cells. Biochem Biophys Res Commun 421:813–818

    Article  CAS  PubMed  Google Scholar 

  70. Lu L, Sun X, Liu Y, Zhao H, Zhao S, Yang H (2012) DJ-1 upregulates tyrosine hydroxylase gene expression by activating its transcriptional factor Nurr1 via the ERK1/2 pathway. Int J Biochem Cell Biol 44:65–71

    Article  CAS  PubMed  Google Scholar 

  71. Ishikawa S, Taira T, Niki T, Takahashi-Niki K, Maita C, Maita H, Ariga H, Iguchi-Ariga SM (2009) Oxidative status of DJ-1-dependent activation of dopamine synthesis through interaction of tyrosine hydroxylase and 4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylase with DJ-1. J Biol Chem 284:28832–28844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Macedo MG, Anar B, Bronner IF, Cannella M, Squitieri F, Bonifati V, Hoogeveen A, Heutink P et al (2003) The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum Mol Genet 12:2807–2816

    Article  CAS  PubMed  Google Scholar 

  73. Miller DW, Ahmad R, Hague S, Baptista MJ, Canet-Aviles R, McLendon C, Carter DM, Zhu PP et al (2003) L166P mutant DJ-1, causative for recessive Parkinson’s disease, is degraded through the ubiquitin-proteasome system. J Biol Chem 278:36588–36595

    Article  CAS  PubMed  Google Scholar 

  74. Moore DJ, Zhang L, Dawson TM, Dawson VL (2003) A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization. J Neurochem 87:1558–1567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yaohua Li for kindly providing us with the plasmids of phRLTK, pGL3-basic, pGL3-THprom, and pGL3-control. This work was supported by grants from the National Basic Research Program of China (2011CB504102 and 2012CB722407), the National Natural Science Foundation of China (81200995, 81371398, and 30950003), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT and TCD 201404179), the Natural Science Foundation of Beijing (7131001), the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20140514), and BIBD-PXM2013_014226_07_000084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Western blot analysis of pP38 and pJNK protein level in MN9D cells overexpressing WT DJ-1 or mutant L166P. Representative western blots (lower panels) and quantitative analysis (upper panels) for pP38 (a) and pJNK (b). Overexpression of the WT DJ-1 or mutant L166P constructs did not significantly alter phosphorylation of P38 or JNK. (JPG 37 kb)

High-resolution image (TIF 15,196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Zhao, S., Gao, G. et al. DJ-1/PARK7, But Not Its L166P Mutant Linked to Autosomal Recessive Parkinsonism, Modulates the Transcriptional Activity of the Orphan Nuclear Receptor Nurr1 In Vitro and In Vivo. Mol Neurobiol 53, 7363–7374 (2016). https://doi.org/10.1007/s12035-016-9772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9772-y

Keywords

Navigation